Parallel Incomplete LU Factorization Based Iterative Solver for Fixed-Structure Linear Equations in Circuit Simulation
A series of fixed-structure sparse linear equations are solved in a circuit simulation process. We propose a parallel incomplete LU (ILU) preconditioned GMRES solver for those equations. A new subtree-based scheduling algorithm for ILU factorization and forward/backward substitution is adopted to ov...
Uloženo v:
| Vydáno v: | 2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC) s. 339 - 345 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY, USA
ACM
16.01.2023
|
| Edice: | ACM Conferences |
| Témata: | |
| ISBN: | 9781450397834, 1450397832 |
| ISSN: | 2153-697X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A series of fixed-structure sparse linear equations are solved in a circuit simulation process. We propose a parallel incomplete LU (ILU) preconditioned GMRES solver for those equations. A new subtree-based scheduling algorithm for ILU factorization and forward/backward substitution is adopted to overcome the load-balancing and data locality problem of the conventional levelization-based scheduling. Experimental results show that the proposed scheduling algorithm can achieve up to 2.6X speedup for ILU factorization and 3.1X speedup for forward/backward substitution compared to the levelization-based scheduling. The proposed ILU-GMRES solver achieves around 4X parallel speedup with 8 threads, which is up to 2.1X faster than that based on the levelization-based scheme. The proposed parallel solver also shows remarkable advantage over existing methods (including HSPICE) on transient simulation of linear and nonlinear circuits. |
|---|---|
| ISBN: | 9781450397834 1450397832 |
| ISSN: | 2153-697X |
| DOI: | 10.1145/3566097.3567882 |

