Universal Skolem Sets
It is a longstanding open problem whether there is an algorithm to decide the Skolem Problem for linear recurrence sequences, namely whether a given such sequence has a zero term. In this paper we introduce the notion of a Universal Skolem Set: an infinite subset \mathcal{S} of the positive integers...
Uloženo v:
| Vydáno v: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
29.06.2021
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | It is a longstanding open problem whether there is an algorithm to decide the Skolem Problem for linear recurrence sequences, namely whether a given such sequence has a zero term. In this paper we introduce the notion of a Universal Skolem Set: an infinite subset \mathcal{S} of the positive integers such that there is an effective procedure that inputs a linear recurrence sequence u = (u(n)) n ≥ 0 and decides whether u(n) = 0 for some n \in \mathcal{S}. The main technical contribution of the paper is to exhibit such a set. |
|---|---|
| DOI: | 10.1109/LICS52264.2021.9470513 |