Universal Skolem Sets

It is a longstanding open problem whether there is an algorithm to decide the Skolem Problem for linear recurrence sequences, namely whether a given such sequence has a zero term. In this paper we introduce the notion of a Universal Skolem Set: an infinite subset \mathcal{S} of the positive integers...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 6
Hlavní autoři: Luca, Florian, Ouaknine, Joel, Worrell, James
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is a longstanding open problem whether there is an algorithm to decide the Skolem Problem for linear recurrence sequences, namely whether a given such sequence has a zero term. In this paper we introduce the notion of a Universal Skolem Set: an infinite subset \mathcal{S} of the positive integers such that there is an effective procedure that inputs a linear recurrence sequence u = (u(n)) n ≥ 0 and decides whether u(n) = 0 for some n \in \mathcal{S}. The main technical contribution of the paper is to exhibit such a set.
DOI:10.1109/LICS52264.2021.9470513