Universal Skolem Sets
It is a longstanding open problem whether there is an algorithm to decide the Skolem Problem for linear recurrence sequences, namely whether a given such sequence has a zero term. In this paper we introduce the notion of a Universal Skolem Set: an infinite subset \mathcal{S} of the positive integers...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science S. 1 - 6 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
29.06.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | It is a longstanding open problem whether there is an algorithm to decide the Skolem Problem for linear recurrence sequences, namely whether a given such sequence has a zero term. In this paper we introduce the notion of a Universal Skolem Set: an infinite subset \mathcal{S} of the positive integers such that there is an effective procedure that inputs a linear recurrence sequence u = (u(n)) n ≥ 0 and decides whether u(n) = 0 for some n \in \mathcal{S}. The main technical contribution of the paper is to exhibit such a set. |
|---|---|
| DOI: | 10.1109/LICS52264.2021.9470513 |