Multi-Structural Games and Number of Quantifiers
We study multi-structural games, played on two sets {\mathcal{A}} and {\mathcal{B}} of structures. These games generalize Ehrenfeucht-Fraïssé games. Whereas Ehrenfeucht-Fraïssé games capture the quantifier rank of a first-order sentence, multi-structural games capture the number of quantifiers, in t...
Uložené v:
| Vydané v: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
29.06.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study multi-structural games, played on two sets {\mathcal{A}} and {\mathcal{B}} of structures. These games generalize Ehrenfeucht-Fraïssé games. Whereas Ehrenfeucht-Fraïssé games capture the quantifier rank of a first-order sentence, multi-structural games capture the number of quantifiers, in the sense that Spoiler wins the r-round game if and only if there is a first-order sentence ϕ with at most r quantifiers, where every structure in {\mathcal{A}} satisfies ϕ and no structure in {\mathcal{B}} satisfies ϕ. We use these games to give a complete characterization of the number of quantifiers required to distinguish linear orders of different sizes, and develop machinery for analyzing structures beyond linear orders. |
|---|---|
| DOI: | 10.1109/LICS52264.2021.9470756 |