Food Process Engineering and Technology (3rd Edition)
This book combines scientific depth with practical usefulness, creating a tool for graduate students and practicing food engineers, technologists and researchers looking for the latest information on transformation and preservation processes and process control and plant hygiene topics. This fully u...
Uloženo v:
| Hlavní autor: | |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
London
Elsevier
2018
Academic Press Elsevier Science & Technology |
| Vydání: | 3 |
| Edice: | Food science and technology, international series |
| Témata: | |
| ISBN: | 0128120185, 9780128120187 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Title Page Introduction Table of Contents 1. Physical Properties of Food Materials 2. Fluid Flow 3. Heat and Mass Transfer, Basic Principles 4. Reaction Kinetics 5. Elements of Process Control 6. Size Reduction 7. Mixing 8. Filtration and Expression 9. Centrifugation 10. Membrane Processes 11. Extraction 12. Adsorption and Ion Exchange 13. Distillation 14. Crystallization and Dissolution 15. Extrusion 16. Spoilage and Preservation of Foods 17. Thermal Processing 18. Thermal Processes, Methods, and Equipment 19. Refrigeration - Chilling and Freezing 20. Refrigeration - Equipment and Methods 21. Evaporation 22. Dehydration 23. Freeze Drying (Lyophilization) and Freeze Concentration 24. Frying, Baking, and Roasting 25. Chemical Preservation 26. Ionizing Irradiation and other Nonthermal Preservation Processes 27. Food Packaging 28. Cleaning, Disinfection, and Sanitation 29. Elements of Food Plant Design Appendix Table A.2. Typical Composition of Selected Foods Table A.3. Viscosity and Density of Gases and Liquids Table A.4. Thermal Properties of Materials Table A.5. Emissivity of Surfaces Table A.7. Properties of Saturated Steam-Temperature Table Table A.9. Properties of Superheated Steam Table A.14. Electrical Conductivity of Some Materials Table A.15. Thermodynamic Properties of Saturated R-134a Table A.16. Thermodynamic Properties of Superheated R-134a Table A.17. Properties of Air at Atmospheric Pressure Table A.18. Surface Tension of Selected Liquids Against Air at 20°C Table A.8. Properties of Saturated Steam-Pressure Table Table A.10. Vapor Pressure of Liquid Water and Ice Below 0°C Table A.11. Freezing Point of Ideal Aqueous Solutions Table A.12. Vapor-Liquid Equilibrium Data for Ethanol-Water Mixtures at 1 atm Table A.13. Boiling Point of Sucrose Solutions at 1 atm Index
- 2.4.1. Energy Relations, The Bernoulli Equation -- 2.4.2. Pumps: Types and Operation -- 2.4.3. Pump Selection -- 2.4.4. Ejectors -- 2.4.5. Piping -- 2.5. Flow of Particulate Solids (Powder Flow) -- 2.5.1. Introduction -- 2.5.2. Flow Properties of Particulate Solids -- 2.5.3. Fluidization -- 2.5.4. Pneumatic Transport -- 2.5.5. Flow of Powders in Storage Bins -- 2.5.6. Caking -- References -- Chapter 3: Heat and mass transfer, basic principles -- 3.1. Introduction -- 3.2. Basic Relations in Transport Phenomena -- 3.2.1. Basic Laws of Transport -- 3.2.2. Mechanisms of Heat and Mass Transfer -- 3.3. Conductive Heat and Mass Transfer -- 3.3.1. The Fourier and Fick Laws -- 3.3.2. Integration of Fourier's and Fick's Laws for Steady-State Conductive Transport -- 3.3.3. Thermal Conductivity, Thermal Diffusivity, and Molecular Diffusivity -- 3.3.3.1. Thermal conductivity and thermal diffusivity -- 3.3.3.2. Molecular (mass) diffusivity, diffusion coefficient -- 3.3.4. Examples of Steady-State Conductive Heat and Mass Transfer Processes -- 3.4. Convective Heat and Mass Transfer -- 3.4.1. Film (or Surface) Heat and Mass Transfer Coefficients -- 3.4.2. Empirical Correlations for Convection Heat and Mass Transfer -- 3.4.3. Steady-State Interphase Mass Transfer -- 3.5. Unsteady-State Heat and Mass Transfer -- 3.5.1. The Second Fourier and Fick Laws -- 3.5.2. Solution of Fourier's Second Law Equation for an Infinite Slab -- 3.5.3. Transient Conduction Transfer in Finite Solids -- 3.5.4. Transient Convective Transfer in a Semiinfinite Body -- 3.5.5. Unsteady-State Convective Transfer -- 3.6. Heat Transfer by Radiation -- 3.6.1. Interaction Between Matter and Thermal Radiation -- 3.6.2. Radiation Heat Exchange Between Surfaces -- 3.6.3. Radiation Combined With Convection -- 3.7. Heat Exchangers -- 3.7.1. Overall Coefficient of Heat Transfer
- 6.1. Introduction -- 6.2. Particle Size and Particle Size Distribution -- 6.2.1. Defining the Size of a Single Particle -- 6.2.2. Particle Size Distribution in a Population of Particles: Defining a "Mean Particle Size" -- 6.2.3. Mathematical Models of PSD -- 6.2.4. A Note on Particle Shape -- 6.3. Size Reduction of Solids, Basic Principles -- 6.3.1. Mechanism of Size Reduction in Solids -- 6.3.2. Particle Size Distribution After Size Reduction -- 6.3.3. Energy Consumption -- 6.4. Size Reduction of Solids-Equipment and Methods -- 6.4.1. Impact Mills -- 6.4.2. Pressure Mills -- 6.4.3. Attrition Mills -- 6.4.4. Cutters and Choppers -- 6.4.5. The Wheat Milling Process -- References -- Chapter 7: Mixing -- 7.1. Introduction -- 7.2. Mixing of Fluids (Blending) -- 7.2.1. Types of Blenders -- 7.2.2. Flow Patterns in Fluid Mixing -- 7.2.3. Energy Input in Fluid Mixing -- 7.2.4. Mixing Time -- 7.3. Kneading -- 7.4. In-Flow Mixing -- 7.5. Mixing of Particulate Solids -- 7.5.1. Mixing and Segregation -- 7.5.2. Quality of Mixing, The Concept of "Mixedness" -- 7.5.3. Equipment for Mixing Particulate Solids -- 7.6. Homogenization -- 7.6.1. Basic Principles -- 7.6.2. Homogenizers -- 7.7. Foaming -- References -- Chapter 8: Filtration and expression -- 8.1. Introduction -- 8.2. Depth Filtration -- 8.2.1. Mechanisms -- 8.2.2. Rate of Filtration -- 8.2.3. Optimization of the Filtration Cycle -- 8.2.4. Characteristics of Filtration Cakes -- 8.2.5. The Role of Cakes in Filtration -- 8.3. Filtration Equipment -- 8.3.1. Depth Filters -- 8.3.2. Barrier (Surface) Filters -- 8.4. Expression -- 8.4.1. Introduction -- 8.4.2. Mechanisms -- 8.4.3. Applications and Equipment -- References -- Chapter 9: Centrifugation -- 9.1. Introduction -- 9.2. Basic Principles -- 9.2.1. The Continuous Settling Tank -- 9.2.2. From Settling Tank to Tubular Centrifuge
- 9.2.3. The Baffled Settling Tank and the Disc-Bowl Centrifuge -- 9.2.4. Liquid-Liquid Separation -- 9.3. Centrifuges -- 9.3.1. Tubular Centrifuges -- 9.3.2. Disc-Bowl Centrifuges -- 9.3.3. Decanter Centrifuges -- 9.3.4. Basket Centrifuges -- 9.4. Cyclones -- References -- Chapter 10: Membrane processes -- 10.1. Introduction -- 10.2. Tangential Filtration -- 10.3. Mass Transfer Through MF and UF Membranes -- 10.3.1. Solvent Transport -- 10.3.2. Solute Transport: Sieving Coefficient and Rejection -- 10.3.3. Concentration Polarization and Gel Polarization -- 10.4. Mass Transfer in Reverse Osmosis -- 10.4.1. Basic Concepts -- 10.4.2. Solvent Transport in Reverse Osmosis -- 10.5. Membrane Systems -- 10.5.1. Membrane Materials -- 10.5.2. Membrane Configurations -- 10.6. Membrane Processes in the Food Industry -- 10.6.1. Microfiltration -- 10.6.2. Ultrafiltration -- 10.6.3. Nanofiltration and Reverse Osmosis -- 10.7. Electrodialysis -- References -- Chapter 11: Extraction -- 11.1. Introduction -- 11.2. Solid-Liquid Extraction (Leaching) -- 11.2.1. Definitions -- 11.2.2. Material Balance -- 11.2.3. Equilibrium -- 11.2.4. Multistage Extraction -- 11.2.5. Stage Efficiency -- 11.2.6. Solid-Liquid Extraction Systems -- 11.2.7. Effect of Processing Conditions on Extraction Performance -- 11.3. Supercritical Fluid Extraction -- 11.3.1. Basic Principles -- 11.3.2. Supercritical Fluids as Solvents -- 11.3.3. Supercritical Extraction Systems -- 11.3.4. Applications -- 11.4. Liquid-Liquid Extraction -- 11.4.1. Principles -- 11.4.2. Applications -- References -- Chapter 12: Adsorption and ion exchange -- 12.1. Introduction -- 12.2. Equilibrium Conditions -- 12.3. Batch Adsorption -- 12.4. Adsorption in Columns -- 12.5. Ion Exchange -- 12.5.1. Basic Principles -- 12.5.2. Properties of Ion Exchangers -- 12.5.3. Water Softening Using Ion Exchange
- 12.5.4. Reduction of Acidity in Fruit Juices Using Ion Exchange
- Front Cover -- Food Process Engineering and Technology -- Copyright -- Dedication -- Contents -- Introduction -- 1. "Food is Life" -- 2. Food Process Engineering -- 3. The Food Process -- 4. Batch and Continuous Processes -- 5. Process Flow Diagrams -- References -- Further Reading -- Chapter 1: Physical properties of food materials -- 1.1. Introduction -- 1.2. Mass, Volume, and Density -- 1.3. Mechanical Properties -- 1.3.1. Definitions -- 1.3.2. Rheological Models -- 1.4. Thermal Properties -- 1.5. Electrical Properties -- 1.6. Structure -- 1.7. Water Activity -- 1.7.1. The Importance of Water in Foods -- 1.7.2. Water Activity, Definition, and Determination -- 1.7.3. Water Activity: Prediction -- 1.7.4. Water Vapor Sorption Isotherms -- 1.7.5. Water Activity: Effect on Food Quality and Stability -- 1.8. Phase Transition Phenomena in Foods -- 1.8.1. The Glassy State in Foods -- 1.8.2. Glass Transition Temperature -- 1.9. Optical Properties -- 1.10. Surface Properties -- 1.11. Acoustic Properties -- References -- Further Reading -- Chapter 2: Fluid flow -- 2.1. Introduction -- 2.2. Elements of Fluid Mechanics -- 2.2.1. Introduction -- 2.2.2. The Navier-Stokes Equation -- 2.2.3. Viscosity -- 2.2.4. Fluid Flow Regimes -- 2.2.5. Typical Applications of Newtonian Laminar Flow -- 2.2.5.1. Laminar flow in a cylindrical channel (pipe or tube) -- 2.2.5.2. Laminar fluid flow on flat surfaces and channels -- 2.2.5.3. Laminar fluid flow around immersed particles -- 2.2.5.4. Fluid flow through porous media -- 2.2.6. Turbulent Flow -- 2.2.6.1. Turbulent Newtonian fluid flow in a cylindrical channel (tube or pipe) -- 2.2.6.2. Turbulent fluid flow around immersed particles -- 2.3. Flow Properties of Fluids -- 2.3.1. Types of Fluid Flow Behavior -- 2.3.2. Non-Newtonian Fluid Flow in Pipes -- 2.4. Transportation of Fluids
- 3.7.2. Heat Exchange Between Flowing Fluids -- 3.7.3. Fouling -- 3.7.4. Heat Exchangers in the Food Process Industry -- 3.8. Microwave and Radio Frequency (RF) Heating -- 3.8.1. Basic Principles of Microwave and RF Heating -- 3.9. Ohmic Heating -- 3.9.1. Introduction -- 3.9.2. Basic Principles -- 3.9.3. Applications and Equipment -- References -- Further Reading -- Chapter 4: Reaction kinetics -- 4.1. Introduction -- 4.2. Basic Concepts -- 4.2.1. Elementary and Nonelementary Reactions -- 4.2.2. Reaction Order -- 4.2.2.1. Zero-order kinetics -- 4.2.2.2. First-order kinetics -- 4.2.3. Effect of temperature on reaction kinetics -- 4.3. Kinetics of Biological Processes -- 4.3.1. Enzyme-Catalyzed Reactions -- 4.3.2. Growth of Microorganisms -- 4.4. Residence Time and Residence Time Distribution -- 4.4.1. Reactors in Food Processing -- 4.4.2. Residence Time Distribution -- References -- Further Reading -- Chapter 5: Elements of process control -- 5.1. Introduction -- 5.2. Basic Concepts -- 5.3. Basic Control Structures -- 5.3.1. Feedback Control -- 5.3.2. Feed-Forward Control -- 5.3.3. Comparative Merits of Control Strategies -- 5.4. The Block Diagram -- 5.5. Input, Output, and Process Dynamics -- 5.5.1. First-Order Response -- 5.5.2. Second-Order Systems -- 5.6. Control Modes (Control Algorithms) -- 5.6.1. On-Off (Binary) Control -- 5.6.2. Proportional (P) Control -- 5.6.3. Integral (I) Control -- 5.6.4. Proportional-Integral (PI) Control -- 5.6.5. Proportional-Integral-Differential (PID) Control -- 5.6.6. Optimization of Control -- 5.7. Physical Elements of the Control System -- 5.7.1. The Sensors (Measuring Elements) -- 5.7.1.1. Temperature -- 5.7.1.2. Pressure -- 5.7.1.3. Flow rate -- 5.7.1.4. Level -- 5.7.1.5. Color, shape, and size -- 5.7.1.6. Composition -- 5.7.2. The Controllers -- 5.7.3. The Actuators -- References -- Chapter 6: Size reduction

