Testing vision-based control systems using learnable evolutionary algorithms

Vision-based control systems are key enablers of many autonomous vehicular systems, including self-driving cars. Testing such systems is complicated by complex and multidimensional input spaces. We propose an automated testing algorithm that builds on learnable evolutionary algorithms. These algorit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE) s. 1016 - 1026
Hlavní autori: Abdessalem, Raja Ben, Nejati, Shiva, Briand, Lionel C., Stifter, Thomas
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: New York, NY, USA ACM 27.05.2018
Edícia:ACM Conferences
Predmet:
ISBN:9781450356381, 1450356389
ISSN:1558-1225
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Vision-based control systems are key enablers of many autonomous vehicular systems, including self-driving cars. Testing such systems is complicated by complex and multidimensional input spaces. We propose an automated testing algorithm that builds on learnable evolutionary algorithms. These algorithms rely on machine learning or a combination of machine learning and Darwinian genetic operators to guide the generation of new solutions (test scenarios in our context). Our approach combines multiobjective population-based search algorithms and decision tree classification models to achieve the following goals: First, classification models guide the search-based generation of tests faster towards critical test scenarios (i.e., test scenarios leading to failures). Second, search algorithms refine classification models so that the models can accurately characterize critical regions (i.e., the regions of a test input space that are likely to contain most critical test scenarios). Our evaluation performed on an industrial automotive automotive system shows that: (1) Our algorithm outperforms a baseline evolutionary search algorithm and generates 78% more distinct, critical test scenarios compared to the baseline algorithm. (2) Our algorithm accurately characterizes critical regions of the system under test, thus identifying the conditions that are likely to lead to system failures.
AbstractList Vision-based control systems are key enablers of many autonomous vehicular systems, including self-driving cars. Testing such systems is complicated by complex and multidimensional input spaces. We propose an automated testing algorithm that builds on learnable evolutionary algorithms. These algorithms rely on machine learning or a combination of machine learning and Darwinian genetic operators to guide the generation of new solutions (test scenarios in our context). Our approach combines multiobjective population-based search algorithms and decision tree classification models to achieve the following goals: First, classification models guide the search-based generation of tests faster towards critical test scenarios (i.e., test scenarios leading to failures). Second, search algorithms refine classification models so that the models can accurately characterize critical regions (i.e., the regions of a test input space that are likely to contain most critical test scenarios). Our evaluation performed on an industrial automotive automotive system shows that: (1) Our algorithm outperforms a baseline evolutionary search algorithm and generates 78% more distinct, critical test scenarios compared to the baseline algorithm. (2) Our algorithm accurately characterizes critical regions of the system under test, thus identifying the conditions that are likely to lead to system failures.
Author Briand, Lionel C.
Abdessalem, Raja Ben
Nejati, Shiva
Stifter, Thomas
Author_xml – sequence: 1
  givenname: Raja Ben
  surname: Abdessalem
  fullname: Abdessalem, Raja Ben
  email: benabdessalem@svv.lu
  organization: University of Luxembourg
– sequence: 2
  givenname: Shiva
  surname: Nejati
  fullname: Nejati, Shiva
  email: nejati@svv.lu
  organization: University of Luxembourg
– sequence: 3
  givenname: Lionel C.
  surname: Briand
  fullname: Briand, Lionel C.
  email: briand@svv.lu
  organization: University of Luxembourg
– sequence: 4
  givenname: Thomas
  surname: Stifter
  fullname: Stifter, Thomas
  email: thomas.stifter@iee.lu
  organization: IEE S.A., Luxembourg
BookMark eNqNkD1PwzAQQM2XRCmdGVgysiT47MRxR1TxJVViKbNlO-diSGIUp5X673FpJyamG97T6e5dkfM-9EjIDdACoKzuOUgKVVX8TkFPyGxeywQorwSXcEomicocGKvO_rBLMovxk1LKhCwliAlZrjCOvl9nWx996HOjIzaZDf04hDaLuzhiF7NN3Cst6qHXpsUMt6HdjMnXwy7T7ToMfvzo4jW5cLqNODvOKXl_elwtXvLl2_Pr4mGZayblmDfOgWXOWT1HME7yEpwVYJiljROSOVlzhpYlhLWtMX2LdcOkMICcG82n5Paw1yOi-h58l-5Qsqz2SRK9O1BtO2VC-IoKqNqnU8d06pguqcU_VWUGj47_AD7CbZI
CODEN IEEPAD
ContentType Conference Proceeding
Copyright 2018 ACM
Copyright_xml – notice: 2018 ACM
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3180155.3180160
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781450356381
1450356389
EISSN 1558-1225
EndPage 1026
ExternalDocumentID 8453180
Genre orig-research
GroupedDBID 6IE
6IF
6IG
6IL
6IM
6IN
AAJGR
ABLEC
ABQGA
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
IJVOP
LHSKQ
OCL
RIB
RIC
RIE
RIL
RIO
-~X
.4S
.DC
123
23M
29O
5VS
6IH
6IK
8US
AAWTH
ADZIZ
AFFNX
ARCSS
AVWKF
CHZPO
EDO
FEDTE
I-F
I07
IPLJI
M43
RNS
XOL
ID FETCH-LOGICAL-a288t-dff1c2ffca9e1bf8341fc61b2c0df682f8732ec2bf8e7c7e015e7d286b1e33ba3
IEDL.DBID RIE
ISBN 9781450356381
1450356389
ISICitedReferencesCount 190
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000454843300126&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:51:12 EDT 2025
Fri Sep 13 11:04:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords automotive software systems
software testing
evolutionary algorithms
search-based software engineering
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel DirectLink
MeetingName ICSE '18: 40th International Conference on Software Engineering
MergedId FETCHMERGED-LOGICAL-a288t-dff1c2ffca9e1bf8341fc61b2c0df682f8732ec2bf8e7c7e015e7d286b1e33ba3
OpenAccessLink https://orbilu.uni.lu/handle/10993/33706
PageCount 11
ParticipantIDs acm_books_10_1145_3180155_3180160
ieee_primary_8453180
acm_books_10_1145_3180155_3180160_brief
PublicationCentury 2000
PublicationDate 20180527
2018-May
PublicationDateYYYYMMDD 2018-05-27
2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 20180527
  day: 27
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)
PublicationTitleAbbrev ICSE
PublicationYear 2018
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002684816
ssj0006499
Score 2.5391304
Snippet Vision-based control systems are key enablers of many autonomous vehicular systems, including self-driving cars. Testing such systems is complicated by complex...
SourceID ieee
acm
SourceType Publisher
StartPage 1016
SubjectTerms Automotive engineering
Automotive Software Systems
Classification algorithms
Control systems
Decision trees
Evolutionary algorithms
Evolutionary computation
Roads
Search-based Software Engineering
Software and its engineering -- Software creation and management -- Search-based software engineering
Software and its engineering -- Software creation and management -- Software verification and validation -- Software defect analysis -- Software testing and debugging
Software Testing
Testing
Title Testing vision-based control systems using learnable evolutionary algorithms
URI https://ieeexplore.ieee.org/document/8453180
WOSCitedRecordID wos000454843300126&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBp6ibOX0QQvNjNpj-SHnVseBhjhzl2K0n6Mgeuk64b-N-bpHEiCOKppU2gfLzmvZe873sI3aooicz5jyc5gBeyRHgiYJknWKx4kKiQWobcbETHYzafJ5Maut9zYQDAFp9B19zas_xsLbdmq6zHQm0xTCfodUrjiqu1308xqiXMhDpuFY51KO-kfPww6pl52nV27dXoUda5XP3oqGIdyrD5v085Qu1vZh6e7H3OMapBfoKaX60ZsPtTW2g0NeoZ-QLPLHfce9LOKsP9qi4dO5lybOsFsJVYNQwqPNg5Q-TFB358W6yLZfm62rTRy3Aw7T97rnGCxwljpZcp5UuilOQJ-EIx7amUjH1B5EOmYkYUowEBSfQroJKCRgZoRlgsfAgCwYNT1MjXOZwhHFEVSylYFgidSSrgnJgkh0SE-lxP7qAbDWRqMoJNWpGco9SBnTqwO-juzzGpKJagOqhloE7fK6WN1KF8_vvjC3SowxdWlR9eokZZbOEKHchdudwU19Y8PgFpnrco
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Cvo0PybOzwiCL1bX9Ct91OFQnGMPU_ZWkvQyB7pJVwf-9yZpnAiC-NTSJlB-XHN3yf1-B3CqojQy5z-e5IheyFLhiYDlnmCx4kGqwsQy5J66Sa_HhsO0vwTnCy4MItriM7wwt_YsP5_Kd7NVdslCbTFMJ-grURjSVsXWWuyoGN0SZoIdtw7HOph3Yj5-GF2amdp5XtirUaRc5vL1R08V61I69f99zAY0vrl5pL_wOpuwhJMtqH81ZyDuX92G7sDoZ0xG5Mmyx71r7a5y0q4q04kTKie2YoBYkVXDoSI3c2eKvPggVy-jaTEun19nDXjs3Azat55rneBxyljp5Ur5kioleYq-UEz7KiVjX1DZylXMqGJJQFFS_QoTmaBGBpOcslj4GASCBztQm0wnuAskSlQspWB5IHQuqZBzatIcGtHE53pyE040kJnJCWZZRXOOMgd25sBuwtmfYzJRjFE1YdtAnb1VWhuZQ3nv98fHsHY7eOhm3bve_T6s62CGVcWIB1Ari3c8hFU5L8ez4siayicfubpv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+40th+International+Conference+on+Software+Engineering&rft.atitle=Testing+vision-based+control+systems+using+learnable+evolutionary+algorithms&rft.au=Abdessalem%2C+Raja+Ben&rft.au=Nejati%2C+Shiva&rft.au=Briand%2C+Lionel+C.&rft.au=Stifter%2C+Thomas&rft.series=ACM+Conferences&rft.date=2018-05-27&rft.pub=ACM&rft.isbn=9781450356381&rft.spage=1016&rft.epage=1026&rft_id=info:doi/10.1145%2F3180155.3180160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450356381/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450356381/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450356381/sc.gif&client=summon&freeimage=true