Full correlation matrix analysis of fMRI data on Intel® Xeon Phi™ coprocessors
Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI) data from human participants. In order to answer neuroscientific questions efficiently, we are developing a closed-loop analysis...
Uloženo v:
| Vydáno v: | Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 1 - 12 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY, USA
ACM
15.11.2015
|
| Edice: | ACM Conferences |
| Témata: | |
| ISBN: | 1450337236, 9781450337236 |
| ISSN: | 2167-4337 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI) data from human participants. In order to answer neuroscientific questions efficiently, we are developing a closed-loop analysis system with FCMA on a cluster of nodes with Intel® Xeon Phi™ coprocessors. Here we propose several ideas for data-driven algorithmic modification to improve the performance on the coprocessor. Our experiments with real datasets show that the optimized single-node code runs 5x-16x faster than the baseline implementation using the well-known Intel® MKL and LibSVM libraries, and that the cluster implementation achieves near linear speedup on 5760 cores. |
|---|---|
| ISBN: | 1450337236 9781450337236 |
| ISSN: | 2167-4337 |
| DOI: | 10.1145/2807591.2807631 |

