Full correlation matrix analysis of fMRI data on Intel® Xeon Phi™ coprocessors

Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI) data from human participants. In order to answer neuroscientific questions efficiently, we are developing a closed-loop analysis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 1 - 12
Hlavní autoři: Wang, Yida, Anderson, Michael J., Cohen, Jonathan D., Heinecke, Alexander, Li, Kai, Satish, Nadathur, Sundaram, Narayanan, Turk-Browne, Nicholas B., Willke, Theodore L.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 15.11.2015
Edice:ACM Conferences
Témata:
ISBN:1450337236, 9781450337236
ISSN:2167-4337
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI) data from human participants. In order to answer neuroscientific questions efficiently, we are developing a closed-loop analysis system with FCMA on a cluster of nodes with Intel® Xeon Phi™ coprocessors. Here we propose several ideas for data-driven algorithmic modification to improve the performance on the coprocessor. Our experiments with real datasets show that the optimized single-node code runs 5x-16x faster than the baseline implementation using the well-known Intel® MKL and LibSVM libraries, and that the cluster implementation achieves near linear speedup on 5760 cores.
ISBN:1450337236
9781450337236
ISSN:2167-4337
DOI:10.1145/2807591.2807631