Full correlation matrix analysis of fMRI data on Intel® Xeon Phi™ coprocessors

Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI) data from human participants. In order to answer neuroscientific questions efficiently, we are developing a closed-loop analysis...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 1 - 12
Hlavní autori: Wang, Yida, Anderson, Michael J., Cohen, Jonathan D., Heinecke, Alexander, Li, Kai, Satish, Nadathur, Sundaram, Narayanan, Turk-Browne, Nicholas B., Willke, Theodore L.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: New York, NY, USA ACM 15.11.2015
Edícia:ACM Conferences
Predmet:
ISBN:1450337236, 9781450337236
ISSN:2167-4337
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI) data from human participants. In order to answer neuroscientific questions efficiently, we are developing a closed-loop analysis system with FCMA on a cluster of nodes with Intel® Xeon Phi™ coprocessors. Here we propose several ideas for data-driven algorithmic modification to improve the performance on the coprocessor. Our experiments with real datasets show that the optimized single-node code runs 5x-16x faster than the baseline implementation using the well-known Intel® MKL and LibSVM libraries, and that the cluster implementation achieves near linear speedup on 5760 cores.
ISBN:1450337236
9781450337236
ISSN:2167-4337
DOI:10.1145/2807591.2807631