Asymptotic Improvements to Quantum Circuits via Qutrits

Quantum computation is traditionally expressed in terms of quantum bits, or qubits. In this work, we instead consider three-level qutrits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2 (3) binary-to-ternary compression factor. We present a novel techniq...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA) s. 554 - 566
Hlavní autori: Gokhale, Pranav, Baker, Jonathan M., Duckering, Casey, Brown, Natalie C., Brown, Kenneth R., Chong, Frederic T.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: ACM 01.06.2019
Predmet:
ISSN:2575-713X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Quantum computation is traditionally expressed in terms of quantum bits, or qubits. In this work, we instead consider three-level qutrits. Past work with qutrits has demonstrated only constant factor improvements, owing to the log2 (3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic depth (runtime) decomposition of the Generalized Toffoli gate using no ancilla-a significant improvement over linear depth for the best qubit-only equivalent. Our circuit construction also features a 70x improvement in two-qudit gate count over the qubit-only equivalent decomposition. This results in circuit cost reductions for important algorithms like quantum neurons and Grover search. We develop an open-source circuit simulator for qutrits, along with realistic near-term noise models which account for the cost of operating qutrits. Simulation results for these noise models indicate over 90% mean reliability (fidelity) for our circuit construction, versus under 30% for the qubit-only baseline. These results suggest that qutrits offer a promising path towards scaling quantum computation.
ISSN:2575-713X
DOI:10.1145/3307650.3322253