Pruning In Time (PIT): A Lightweight Network Architecture Optimizer for Temporal Convolutional Networks
Temporal Convolutional Networks (TCNs) are promising Deep Learning models for time-series processing tasks. One key feature of TCNs is time-dilated convolution, whose optimization requires extensive experimentation. We propose an automatic dilation optimizer, which tackles the problem as a weight pr...
Uložené v:
| Vydané v: | 2021 58th ACM/IEEE Design Automation Conference (DAC) s. 1015 - 1020 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
05.12.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Temporal Convolutional Networks (TCNs) are promising Deep Learning models for time-series processing tasks. One key feature of TCNs is time-dilated convolution, whose optimization requires extensive experimentation. We propose an automatic dilation optimizer, which tackles the problem as a weight pruning on the time-axis, and learns dilation factors together with weights, in a single training. Our method reduces the model size and inference latency on a real SoC hardware target by up to 7.4× and 3×, respectively with no accuracy drop compared to a network without dilation. It also yields a rich set of Pareto-optimal TCNs starting from a single model, outperforming hand-designed solutions in both size and accuracy. |
|---|---|
| DOI: | 10.1109/DAC18074.2021.9586187 |