Dataflow Mirroring: Architectural Support for Highly Efficient Fine-Grained Spatial Multitasking on Systolic-Array NPUs
We present dataflow mirroring, architectural support for low-overhead fine-grained systolic array allocation which overcomes the limitations of prior coarse-grained spatial-multitasking Neural Processing Unit (NPU) architectures. The key idea of dataflow mirroring is to reverse the dataflows of co-l...
Gespeichert in:
| Veröffentlicht in: | 2021 58th ACM/IEEE Design Automation Conference (DAC) S. 247 - 252 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
05.12.2021
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present dataflow mirroring, architectural support for low-overhead fine-grained systolic array allocation which overcomes the limitations of prior coarse-grained spatial-multitasking Neural Processing Unit (NPU) architectures. The key idea of dataflow mirroring is to reverse the dataflows of co-located Neural Networks (NNs) in horizontal and/or vertical directions, allowing allocation boundaries to be set between any adjacent rows and columns of a systolic array and supporting up to four-way spatial multitasking. Our detailed experiments using MLPerf NNs and a dataflow-mirroring-augmented NPU prototype which extends Google's TPU with dataflow mirroring shows that dataflow mirroring can significantly improve the multitasking performance by up to 46.4%. |
|---|---|
| DOI: | 10.1109/DAC18074.2021.9586312 |