Dataflow Mirroring: Architectural Support for Highly Efficient Fine-Grained Spatial Multitasking on Systolic-Array NPUs
We present dataflow mirroring, architectural support for low-overhead fine-grained systolic array allocation which overcomes the limitations of prior coarse-grained spatial-multitasking Neural Processing Unit (NPU) architectures. The key idea of dataflow mirroring is to reverse the dataflows of co-l...
Uložené v:
| Vydané v: | 2021 58th ACM/IEEE Design Automation Conference (DAC) s. 247 - 252 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
05.12.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present dataflow mirroring, architectural support for low-overhead fine-grained systolic array allocation which overcomes the limitations of prior coarse-grained spatial-multitasking Neural Processing Unit (NPU) architectures. The key idea of dataflow mirroring is to reverse the dataflows of co-located Neural Networks (NNs) in horizontal and/or vertical directions, allowing allocation boundaries to be set between any adjacent rows and columns of a systolic array and supporting up to four-way spatial multitasking. Our detailed experiments using MLPerf NNs and a dataflow-mirroring-augmented NPU prototype which extends Google's TPU with dataflow mirroring shows that dataflow mirroring can significantly improve the multitasking performance by up to 46.4%. |
|---|---|
| DOI: | 10.1109/DAC18074.2021.9586312 |