SNNVis: Visualizing Graph Embedding of Evolutionary Optimization for Spiking Neural Networks
While Spiking Neural Networks (SNNs) show a lot of promise, it is difficult to optimize them because applying traditional gradient-based optimization techniques is difficult. Even though evolutionary algorithms (EAs) have been shown to promise to optimize SNNs, understanding the relationship between...
Uložené v:
| Vydané v: | 2024 International Conference on Neuromorphic Systems (ICONS) s. 327 - 330 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
30.07.2024
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | While Spiking Neural Networks (SNNs) show a lot of promise, it is difficult to optimize them because applying traditional gradient-based optimization techniques is difficult. Even though evolutionary algorithms (EAs) have been shown to promise to optimize SNNs, understanding the relationship between evolving the characteristics of SNNs and their performance to improve the optimization algorithm is challenging because of the complex characteristics and huge population size. We propose visual analytics with novel graph embedding for evolutionary SNNs to address the challenges. While existing graph embedding techniques have limitations in preserving the specific features of the nodes and edges, our approach maintains them. Also, we develop visual analytics for understanding the relationship between the network performance and the features of nodes and edges and exploring and analyzing the evolving SNNs to build insights into improving the EA. |
|---|---|
| AbstractList | While Spiking Neural Networks (SNNs) show a lot of promise, it is difficult to optimize them because applying traditional gradient-based optimization techniques is difficult. Even though evolutionary algorithms (EAs) have been shown to promise to optimize SNNs, understanding the relationship between evolving the characteristics of SNNs and their performance to improve the optimization algorithm is challenging because of the complex characteristics and huge population size. We propose visual analytics with novel graph embedding for evolutionary SNNs to address the challenges. While existing graph embedding techniques have limitations in preserving the specific features of the nodes and edges, our approach maintains them. Also, we develop visual analytics for understanding the relationship between the network performance and the features of nodes and edges and exploring and analyzing the evolving SNNs to build insights into improving the EA. |
| Author | Chae, Junghoon Kulkarni, Shruti Lim, Seung-Hwan Schuman, Catherine |
| Author_xml | – sequence: 1 givenname: Junghoon surname: Chae fullname: Chae, Junghoon email: chaej@ornl.gov organization: Oak Ridge National Laboratory – sequence: 2 givenname: Seung-Hwan surname: Lim fullname: Lim, Seung-Hwan email: lims1@ornl.gov organization: Oak Ridge National Laboratory – sequence: 3 givenname: Shruti surname: Kulkarni fullname: Kulkarni, Shruti email: kulkarnisr@ornl.gov organization: Oak Ridge National Laboratory – sequence: 4 givenname: Catherine surname: Schuman fullname: Schuman, Catherine email: cschuman@utk.edu organization: University of Tennessee |
| BookMark | eNotj89KxDAYxCPoQdd9A4W8QGvypUkab1Lq7sLSHqqehOVrm2rY_qPtKu7T26KX-TEwDDM35LLtWkvIPWc-58w87KI0yRQYzn1gEPiMMakuyNpoEwrJhAqVNNfkPUuSNzc-0llOWLuzaz_oZsD-k8ZNbsty8V1F46-uPk2ua3H4oWk_ucadcfG06gaa9e64BBN7GrCeMX13w3G8JVcV1qNd_3NFXp_jl2jr7dPNLnraewihnjxtEZgJbIgBQ7S5ZqUQCAUUleagQQZgQKAuuAh0IZXM8xDmH5oVBowFsSJ3f73OWnvoB9fMKw-caaWk4OIX6ghRdg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICONS62911.2024.00056 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350368659 |
| EndPage | 330 |
| ExternalDocumentID | 10766531 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-a287t-7ea2094e8a40aaeb70d33a2c2cf71272542923a7c1347c565bb8297970c929e23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001462433900048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 03:01:05 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a287t-7ea2094e8a40aaeb70d33a2c2cf71272542923a7c1347c565bb8297970c929e23 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/2573544 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_10766531 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-July-30 |
| PublicationDateYYYYMMDD | 2024-07-30 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-July-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 International Conference on Neuromorphic Systems (ICONS) |
| PublicationTitleAbbrev | ICONS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8911536 |
| Snippet | While Spiking Neural Networks (SNNs) show a lot of promise, it is difficult to optimize them because applying traditional gradient-based optimization... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 327 |
| SubjectTerms | evolutionary algorithm Evolutionary computation Neuromorphics Optimization SNN Spiking neural networks Visual analytics |
| Title | SNNVis: Visualizing Graph Embedding of Evolutionary Optimization for Spiking Neural Networks |
| URI | https://ieeexplore.ieee.org/document/10766531 |
| WOSCitedRecordID | wos001462433900048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDDg-eVJz4mxy8Rtuky1u8jk0F6QbTsYMwXpNXGOg29gv0rzfJ6o-LBy9tSQuFNMl7L32f92XsKjXOZqCsIJ2ByJRzAqlEkWa2UNYZbaNKxOAR8rw5HJpeBatHFoaIYvIZXYfL-C_fTe0qbJX5GQ5aNwI1vQ2gN7BWReWkibl5aHXzvpZ--vq4T4aq2EnQpf6lmhKNRmfvn6_bZ_Uf_I73vg3LAduiySF76ef5YLy45f4QQMgPf4vfhXLTvP1WkAuP8mnJ2-tqMOH8nXf9gvBWkZbcu6e8PxuHvXEeanLgqz_FJPBFnT132k-te1FJIwj0Ic5SAKH0gRk1MUsQqYDEKYXSSltCKkFGFSqFYAMpar3TVhSBoTWQWO8PkVRHrDaZTuiYcavBpbpM_bJYZqhNEyEpjHeMGmiRpDxh9dA1o9mm-sXoq1dO_2g_Y7symL6YFHjOasv5ii7Yjl0vx4v5ZfxmnxZ3mlg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEMeDVEFPKlZ8m4PXaDabJl2vpbVi3RZaSw9CmU1moWAf9AX66U3S9XHx4GV32Q0Ekk0yM8lv_oTcRIk1UseGoZKaydhaBpgDi6TJYmMTZYJKRL-l07Q6GCSdAlYPLAwihsNneOsfw16-nZqVD5W5Ea6VqnhqersipeAbXKvgciKe3D3W2mlXCTeAnecnfF5s7pWpf-mmhGWjsf_PCg9I-QfAo53vpeWQbOHkiLx207Q_WtxTd_Eo5If7RB98wmlaH2dofVE6zWl9XfxOMH-nbTcljAvWkjoDlXZnIx8dpz4rB7y5WzgGviiTl0a9V2uyQhyBgXNylkwjCOeaYRUkB8BMcxvHIIwwuY6EFkGHKgZtPCtqnNmWZZ6iTTQ3ziJCER-T0mQ6wRNCjdI2UnnkJsZcgkqqoHmWONOoAgZQiFNS9k0znG3yXwy_WuXsj_fXZLfZe24NW4_p0znZ8z0RoqH8gpSW8xVekh2zXo4W86vQf59NN52h |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Neuromorphic+Systems+%28ICONS%29&rft.atitle=SNNVis%3A+Visualizing+Graph+Embedding+of+Evolutionary+Optimization+for+Spiking+Neural+Networks&rft.au=Chae%2C+Junghoon&rft.au=Lim%2C+Seung-Hwan&rft.au=Kulkarni%2C+Shruti&rft.au=Schuman%2C+Catherine&rft.date=2024-07-30&rft.pub=IEEE&rft.spage=327&rft.epage=330&rft_id=info:doi/10.1109%2FICONS62911.2024.00056&rft.externalDocID=10766531 |