EImprove - Optimizing Energy and Comfort in Buildings based on Formal Semantics and Reinforcement Learning
Heating, ventilation, and air-conditioning (HVAC) system's supervisory control is crucial for energy-efficient thermal comfort in buildings. The control logic is usually specified as 'if-then-that-else' rules that capture the domain expertise of HVAC operators, but they often have con...
Uložené v:
| Vydané v: | 2021 58th ACM/IEEE Design Automation Conference (DAC) s. 157 - 162 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
05.12.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Heating, ventilation, and air-conditioning (HVAC) system's supervisory control is crucial for energy-efficient thermal comfort in buildings. The control logic is usually specified as 'if-then-that-else' rules that capture the domain expertise of HVAC operators, but they often have conflicts that may lead to sub-optimal HVAC performance. We propose EImprove, a reinforcement-learning (RL) based framework that exploits these conflicts to learn a resolution policy. We evaluate EImprove through a co-simulation strategy involving EnergyPlus simulations of a real-world office setting and a formal requirement specifier. Our experiments show that EImprove learns 75% faster than a pure RL framework. |
|---|---|
| DOI: | 10.1109/DAC18074.2021.9586313 |