NeurFill: Migrating Full-Chip CMP Simulators to Neural Networks for Model-Based Dummy Filling Synthesis

Dummy filling is widely applied to significantly improve the planarity of topographic patterns for the chemical mechanical polishing (CMP) process in VLSI manufacturing. This paper proposes a novel model-based dummy filling synthesis framework NeurFill, integrated with multiple starting points-seque...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 187 - 192
Hlavní autori: Cai, Junzhe, Yan, Changhao, Ma, Yuzhe, Yu, Bei, Zhou, Dian, Zeng, Xuan
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 05.12.2021
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Dummy filling is widely applied to significantly improve the planarity of topographic patterns for the chemical mechanical polishing (CMP) process in VLSI manufacturing. This paper proposes a novel model-based dummy filling synthesis framework NeurFill, integrated with multiple starting points-sequential quadratic programming (MSP-SQP) optimization solver. Inside this framework, a full-chip CMP simulator is first migrated to the neural network, achieving 8134 \times speedup on gradient calculation by backward propagation. Multi-modal starting points search is further applied in the framework to obtain satisfying filling quality optimums. The experimental results show that the proposed NeurFill outperforms existing rule- and model-based methods.
DOI:10.1109/DAC18074.2021.9586325