White-Box Performance-Influence Models: A Profiling and Learning Approach

Many modern software systems are highly configurable, allowing the user to tune them for performance and more. Current performance modeling approaches aim at finding performance-optimal configurations by building performance models in a black-box manner. While these models provide accurate estimates...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / International Conference on Software Engineering s. 1059 - 1071
Hlavní autoři: Weber, Max, Apel, Sven, Siegmund, Norbert
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2021
Témata:
ISBN:1665402962, 9781665402965
ISSN:1558-1225
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many modern software systems are highly configurable, allowing the user to tune them for performance and more. Current performance modeling approaches aim at finding performance-optimal configurations by building performance models in a black-box manner. While these models provide accurate estimates, they cannot pinpoint causes of observed performance behavior to specific code regions. This does not only hinder system understanding, but it also complicates tracing the influence of configuration options to individual methods. We propose a white-box approach that models configuration-dependent performance behavior at the method level. This allows us to predict the influence of configuration decisions on individual methods, supporting system understanding and performance debugging. The approach consists of two steps: First, we use a coarse-grained profiler and learn performance-influence models for all methods, potentially identifying some methods that are highly configuration-and performance-sensitive, causing inaccurate predictions. Second, we re-measure these methods with a fine-grained profiler and learn more accurate models, at higher cost, though. By means of 9 real-world Java software systems, we demonstrate that our approach can efficiently identify configuration-relevant methods and learn accurate performance-influence models.
AbstractList Many modern software systems are highly configurable, allowing the user to tune them for performance and more. Current performance modeling approaches aim at finding performance-optimal configurations by building performance models in a black-box manner. While these models provide accurate estimates, they cannot pinpoint causes of observed performance behavior to specific code regions. This does not only hinder system understanding, but it also complicates tracing the influence of configuration options to individual methods. We propose a white-box approach that models configuration-dependent performance behavior at the method level. This allows us to predict the influence of configuration decisions on individual methods, supporting system understanding and performance debugging. The approach consists of two steps: First, we use a coarse-grained profiler and learn performance-influence models for all methods, potentially identifying some methods that are highly configuration-and performance-sensitive, causing inaccurate predictions. Second, we re-measure these methods with a fine-grained profiler and learn more accurate models, at higher cost, though. By means of 9 real-world Java software systems, we demonstrate that our approach can efficiently identify configuration-relevant methods and learn accurate performance-influence models.
Author Siegmund, Norbert
Weber, Max
Apel, Sven
Author_xml – sequence: 1
  givenname: Max
  surname: Weber
  fullname: Weber, Max
  organization: Leipzig University, Germany
– sequence: 2
  givenname: Sven
  surname: Apel
  fullname: Apel, Sven
  organization: Saarland University, Saarland Informatics Campus, Germany
– sequence: 3
  givenname: Norbert
  surname: Siegmund
  fullname: Siegmund, Norbert
  organization: Leipzig University, Germany
BookMark eNotjs1Kw0AURgesYFv7BLrIC6Te-c1cd7VUDUQsqLgsM9M7NpBOyqSCvr0VXX3nbA7fhI1Sn4ixaw5zzgFv6uXLSkkEMRcg-BwAEM_YhBujFQg0YsTGXGtbciH0BZsNQ-tBqQo5GDVm9fuuPVJ5138Va8qxz3uXApV1it0nnah46rfUDbfFoljnPrZdmz4Kl7ZFQy6nX1kcDrl3YXfJzqPrBpr975S93a9el49l8_xQLxdN6YTVx9LqSgWHAb31MmKMUvvogbiFyjpvXBQUKm9PnwMqGYKPEaVxhnsQvrJyyq7-ui0RbQ653bv8vUEFHCstfwBdS09N
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICSE43902.2021.00099
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)【Remote access available】
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 1071
ExternalDocumentID 9401975
Genre orig-research
GroupedDBID -~X
.4S
.DC
123
23M
29O
5VS
6IE
6IF
6IH
6IK
6IL
6IM
6IN
8US
AAJGR
AAWTH
ABLEC
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
APO
ARCSS
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
EDO
FEDTE
I-F
I07
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
XOL
ID FETCH-LOGICAL-a285t-8574ca9c9b8b3f9ff35bfb0e18078ab6af2ec7b8155c943ccbff936a61b02b783
IEDL.DBID RIE
ISBN 1665402962
9781665402965
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684601800086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1558-1225
IngestDate Wed Aug 27 02:03:33 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a285t-8574ca9c9b8b3f9ff35bfb0e18078ab6af2ec7b8155c943ccbff936a61b02b783
PageCount 13
ParticipantIDs ieee_primary_9401975
PublicationCentury 2000
PublicationDate 2021-May
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May
PublicationDecade 2020
PublicationTitle Proceedings / International Conference on Software Engineering
PublicationTitleAbbrev ICSE
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib044791064
ssj0006499
Score 2.3079433
Snippet Many modern software systems are highly configurable, allowing the user to tune them for performance and more. Current performance modeling approaches aim at...
SourceID ieee
SourceType Publisher
StartPage 1059
SubjectTerms configuration management
Debugging
Java
Predictive models
Software engineering
Software measurement
software product lines
Software systems
software variability
Testing
Title White-Box Performance-Influence Models: A Profiling and Learning Approach
URI https://ieeexplore.ieee.org/document/9401975
WOSCitedRecordID wos000684601800086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JawIxGA0qPfRkWy3dyaHHjk4yk0nSmxWlQhGhLXiTrEUoo7iU_vwmMaMUeuktySGEL8vL9t4D4L5gBrllTieMeEoOclNKYisSQx32CsklsUFn9oWOx2w65ZMaeNhzYYwx4fOZ6fhkeMvXC7X1V2Vd7g4DnJI6qFNa7Lha1djJc-qAz2_94ypc5ME70sGlOyW5QetJXd5pN8W8wFHrqcqTyKlDKe-O-q8DB9KBpIVRJ2yhfjmvBOAZNv_X5BPQPjD44GSPTaegZsoz0KwsHGCc0S0wCgZ5ydPiG04OFIJkVFmXQO-V9rl-hD1fnZ178joUpYZRl_UD9qIoeRu8Dwdv_eckuiskAjOycZ1DcyW44pLJzHJrMyKtTA3yCvRCFsJio6hkLoKK55lS0lqeFaJAMsWSsuwcNMpFaS4ARNZor4pDMqNzhrVETEqlhdWG58KQS9DykZktdwIasxiUq7-Lr8GxD_3uV-ENaGxWW3MLjtTXZr5e3YVe_wFE_qaR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4QTfSECsZve_DoYOvarfWGBMIiEhIx4Ub6aUjMMHwYf75t2SAmXrx1PTTL27d92u19ngeA-4TqyG5zKqDEUXIiu6QEMjzQqcVeLpggxuvMDtLhkE4mbFQBD1sujNbaF5_ppmv6f_lqLtfuU1mL2csAS8ke2CcYo3DD1iqzB-PUQp87_Bf7cIK9e6QFTHtPsmnraF3OazdELEGF2lP5TApWXRSyVtZ57VqY9jQtFDX9IeqX94qHnl7tfy99DBo7Dh8cbdHpBFR0fgpqpYkDLNZ0HWTeIi94mn_D0Y5EEGSleQl0bmkfy0fYdsOZmaOvQ54rWCizvsN2IUveAG-97rjTDwp_hYAjSlZ2elIsOZNMUBEbZkxMhBGhjpwGPRcJN0jLVFAbQclwLKUwhsUJTyIRIpHS-AxU83muzwGMjFZOF4fEWmGKlIioEFJxozTDXJMLUHeRmX5uJDSmRVAu_-6-A4f98ctgOsiGz1fgyE3DpsbwGlRXi7W-AQfyazVbLm59BvwAJGOp2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=White-Box+Performance-Influence+Models%3A+A+Profiling+and+Learning+Approach&rft.au=Weber%2C+Max&rft.au=Apel%2C+Sven&rft.au=Siegmund%2C+Norbert&rft.date=2021-05-01&rft.pub=IEEE&rft.isbn=9781665402965&rft.issn=1558-1225&rft.spage=1059&rft.epage=1071&rft_id=info:doi/10.1109%2FICSE43902.2021.00099&rft.externalDocID=9401975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-1225&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-1225&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-1225&client=summon