Execution-based prediction using speculative slices

A relatively small set of static instructions has significant leverage on program execution performance. These problem instructions contribute a disproportionate number of cache misses and branch mispredictions because their behavior cannot be accurately anticipated using existing prefetching or bra...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:28th IEEE International Symposium on Computer Architecture, 2001, Goteborg, Sweden s. 2 - 13
Hlavní autoři: Zilles, Craig, Sohi, Gurindar
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 01.01.2001
Edice:ACM Conferences
Témata:
ISBN:0769511627, 9780769511627
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A relatively small set of static instructions has significant leverage on program execution performance. These problem instructions contribute a disproportionate number of cache misses and branch mispredictions because their behavior cannot be accurately anticipated using existing prefetching or branch prediction mechanisms. The behavior of many problem instructions can be predicted by executing a small code fragment called a speculative slice. If a speculative slice is executed before the corresponding problem instructions are fetched, then the problem instructions can move smoothly through the pipeline because the slice has tolerated the latency of the memory hierarchy (for loads) or the pipeline (for branches). This technique results in speedups up to 43 percent over an aggressive baseline machine. To benefit from branch predictions generated by speculative slices, the predictions must be bound to specific dynamic branch instances. We present a technique that invalidates predictions when it can be determined (by monitoring the program's execution path) that they will not be used. This enables the remaining predictions to be correctly correlated.
Bibliografie:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:0769511627
9780769511627
DOI:10.1145/379240.379246