AutoRestTest: A Tool for Automated REST API Testing Using LLMs and MARL
As REST APIs have become widespread in modern web services, comprehensive testing of these APIs is increasingly crucial. Because of the vast search space of operations, parameters, and parameter values, along with their dependencies and constraints, current testing tools often achieve low code cover...
Uloženo v:
| Vydáno v: | Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) s. 21 - 24 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
27.04.2025
|
| Témata: | |
| ISSN: | 2574-1934 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | As REST APIs have become widespread in modern web services, comprehensive testing of these APIs is increasingly crucial. Because of the vast search space of operations, parameters, and parameter values, along with their dependencies and constraints, current testing tools often achieve low code coverage, resulting in suboptimal fault detection. To address this limitation, we present AutoRestTest, a novel tool that integrates the Semantic Property Dependency Graph (SPDG) with Multi-Agent Reinforcement Learning (MARL) and large language models (LLMs) for effective REST API testing. AutoRestTest determines operation-dependent parameters using the SPDG and employs five specialized agents (operation, parameter, value, dependency, and header) to identify dependencies of operations and generate operation sequences, parameter combinations, and values. Through an intuitive command-line interface, users can easily configure and monitor tests with successful operation count, unique server errors detected, and time elapsed. Upon completion, AutoRestTest generates a detailed report highlighting errors detected and operations exercised. In this paper, we introduce our tool and present preliminary findings, with a demonstration video available at https://www.youtube.com/watch?v=VVus2W8rap8. |
|---|---|
| AbstractList | As REST APIs have become widespread in modern web services, comprehensive testing of these APIs is increasingly crucial. Because of the vast search space of operations, parameters, and parameter values, along with their dependencies and constraints, current testing tools often achieve low code coverage, resulting in suboptimal fault detection. To address this limitation, we present AutoRestTest, a novel tool that integrates the Semantic Property Dependency Graph (SPDG) with Multi-Agent Reinforcement Learning (MARL) and large language models (LLMs) for effective REST API testing. AutoRestTest determines operation-dependent parameters using the SPDG and employs five specialized agents (operation, parameter, value, dependency, and header) to identify dependencies of operations and generate operation sequences, parameter combinations, and values. Through an intuitive command-line interface, users can easily configure and monitor tests with successful operation count, unique server errors detected, and time elapsed. Upon completion, AutoRestTest generates a detailed report highlighting errors detected and operations exercised. In this paper, we introduce our tool and present preliminary findings, with a demonstration video available at https://www.youtube.com/watch?v=VVus2W8rap8. |
| Author | Kim, Myeongsoo Orso, Alessandro Sinha, Saurabh Stennett, Tyler |
| Author_xml | – sequence: 1 givenname: Tyler surname: Stennett fullname: Stennett, Tyler email: tyler.stennett@gatech.edu organization: Georgia Institute of Technology,Atlanta,Georgia,USA – sequence: 2 givenname: Myeongsoo surname: Kim fullname: Kim, Myeongsoo email: mkim754@gatech.edu organization: Georgia Institute of Technology,Atlanta,Georgia,USA – sequence: 3 givenname: Saurabh surname: Sinha fullname: Sinha, Saurabh email: sinhas@us.ibm.com organization: IBM Research,New York,Yorktown Heights,USA – sequence: 4 givenname: Alessandro surname: Orso fullname: Orso, Alessandro email: orso@cc.gatech.edu organization: Georgia Institute of Technology,Atlanta,Georgia,USA |
| BookMark | eNotUM1OhDAYrEYT15U38NCTN7Bf_2i9EYIrCRsNy543LRSDWegG8ODbC9HDzBxmMpnMPboZ_OAQegISARD9nKeHLEx9fzFD5wcpqaARJVREhBAQVyjQsVaMgWBSMbhGGypiHoJm_A4F0_S1xBgljOt4g3bJ9-xLN83Vghec4Mr7M279iFejN7NrcJkdKpx85HjNdMMnPk4rF8V-wmZo8D4piwd025rz5IJ_3aLja1alb2HxvsvTpAgNVWQOa0tbcMI2sRQtKGdbIutGaQa8XfYq5qyNuTOyFgq0hAVOxg23IIFLatkWPf71ds6502XsejP-nJZbKGdcsV97MlAl |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICSE-Companion66252.2025.00015 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331536831 |
| EISSN | 2574-1934 |
| EndPage | 24 |
| ExternalDocumentID | 11024348 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: CCF-0725202 funderid: 10.13039/100000001 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-a280t-cb2f1e5bd765f18ebf06cd89314f15383ebb74ea6c581961196e67d4b161462b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001554070400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jun 18 06:01:38 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a280t-cb2f1e5bd765f18ebf06cd89314f15383ebb74ea6c581961196e67d4b161462b3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_11024348 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-April-27 |
| PublicationDateYYYYMMDD | 2025-04-27 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) |
| PublicationTitleAbbrev | ICSE-COMPANION |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203497 |
| Score | 2.2894056 |
| Snippet | As REST APIs have become widespread in modern web services, comprehensive testing of these APIs is increasingly crucial. Because of the vast search space of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 21 |
| SubjectTerms | Automated REST API Testing Codes Fault detection Large language models Monitoring Multi Agent Reinforcement Learning for Testing Reinforcement learning Semantics Servers Software engineering Testing Web services |
| Title | AutoRestTest: A Tool for Automated REST API Testing Using LLMs and MARL |
| URI | https://ieeexplore.ieee.org/document/11024348 |
| WOSCitedRecordID | wos001554070400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9uiPik4sRv8iC-1bVpm3S-lbHpoBtjVtjbyMcVBGll6_z7vevm9MUHHwIhbUK40tzv7vK7Y-xO6cB3ukBL1fScR9RKLxGGAq5KOgmJUUFDFM7UZJLM573plqzecGEAoLl8Bg_UbWL5rrJrcpV1UVWJKIySFmspJTdkrZ1DJRSUakUdsPttHs3uqP8y8Da_FdXDQaRPzCtBThSfyuD-KqfSaJPh0T_3ccw6P7w8Pt1pnBO2B-Upe0rXdTXDwz3H9shTnlfVO0csyukBAlJwHMWc83Q64vQOTuXNTQGeZeMV16Xj43SWddjrcJD3n71teQRPi8SvPWtEEUBsnJJxESRgCl9ah_gjiAo6x0IwRkWgpY1R7csAG0jlIoMgL5LChGesXVYlnDPua9EzroiBzENjpYkTjYYIhDKSuLy9YB2SwuJjkwFj8S2Ayz_Gr9ghCZqiLkJds3a9XMMN27ef9dtqedt8ty92JZad |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50ivqk4sTf5kF8q2vTNOl8K2Nzw26MWWFvo2muIEgrW-ffb66b0xcffAiEtAnhSnPf3eW7A7hTqeeaNLeWqm4bh6iVTsg1BVyVNBJDrbyaKByr0SicTtvjNVm95sIgYn35DB-oW8fyTZktyVXWsqqKC1-E27ATCMHdFV1r41LxOSVbUXtwv86k2Rp0XrrO6seiijgW6xP3ipMbxaVCuL8KqtT6pHf4z50cQfOHmcfGG51zDFtYnMBTtKzKiT3eE9seWcSSsnxnFo0yemAhKRpmBZ2waDxg9I6dyuq7AiyOhwuWFoYNo0nchNdeN-n0nXWBBCfloVs5mea5h4E2Sga5F6LOXZkZi0A8kdNJ5qPWSmAqs8AqfunZhlIZoS3ME5Jr_xQaRVngGTA35W1t8gDJQNSZ1EGYWlMEfSmkXT47hyZJYfaxyoEx-xbAxR_jt7DfT4bxLB6Mni_hgIROMRiurqBRzZd4DbvZZ_W2mN_U3_ALf5uZ5A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE%2FACM+International+Conference+on+Software+Engineering+Companion.+Online%29&rft.atitle=AutoRestTest%3A+A+Tool+for+Automated+REST+API+Testing+Using+LLMs+and+MARL&rft.au=Stennett%2C+Tyler&rft.au=Kim%2C+Myeongsoo&rft.au=Sinha%2C+Saurabh&rft.au=Orso%2C+Alessandro&rft.date=2025-04-27&rft.pub=IEEE&rft.eissn=2574-1934&rft.spage=21&rft.epage=24&rft_id=info:doi/10.1109%2FICSE-Companion66252.2025.00015&rft.externalDocID=11024348 |