FairLay-ML: Intuitive Debugging of Fairness in Data-Driven Social-Critical Software
Data-driven software solutions have significantly been used in critical domains with significant socio-economic, legal, and ethical implications. The rapid adoptions of data-driven solutions, however, pose major threats to the trustworthiness of automated decision-support software. A diminished unde...
Saved in:
| Published in: | Proceedings (IEEE/ACM International Conference on Software Engineering Companion. Online) pp. 25 - 28 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
27.04.2025
|
| Subjects: | |
| ISSN: | 2574-1934 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Data-driven software solutions have significantly been used in critical domains with significant socio-economic, legal, and ethical implications. The rapid adoptions of data-driven solutions, however, pose major threats to the trustworthiness of automated decision-support software. A diminished understanding of the solution by the developer and historical/current biases in the data sets are primary challenges. To aid data-driven software developers and end-users, we present FairLay-ML, a debugging tool to test and explain the fairness implications of data-driven solutions. FairLay-ML visualizes the logic of datasets, trained models, and decisions for a given data point. In addition, it trains various models with varying fairness-accuracy tradeoffs. Crucially, FairLay-ML incorporates counterfactual fairness testing that finds bugs beyond the development datasets. We conducted two studies through FairLay-ML that allowed us to measure false positives/negatives in prevalent counterfactual testing and understand the human perception of counterfactual test cases in a class survey. FairLay-ML and its benchmarks are publicly available at https://github.com/Pennswood/FairLay-ML. The live version of the tool is available at https://fairlayml-v2.streamlit.app/. We provide a video demo of the tool at https://youtu.be/wNI9UWkywVU?t=133. |
|---|---|
| ISSN: | 2574-1934 |
| DOI: | 10.1109/ICSE-Companion66252.2025.00016 |