Ripple: Asynchronous Programming for Spatial Dataflow Architectures
Spatial dataflow architectures (SDAs) are a promising and versatile accelerator platform. They are software-programmable and achieve near-ASIC performance and energy efficiency, beating CPUs by orders of magnitude. Unfortunately, many SDAs struggle to efficiently implement irregular computations bec...
Uloženo v:
| Vydáno v: | Proceedings of ACM on programming languages Ročník 9; číslo PLDI; s. 249 - 276 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY, USA
ACM
10.06.2025
|
| Témata: | |
| ISSN: | 2475-1421, 2475-1421 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Spatial dataflow architectures (SDAs) are a promising and versatile accelerator platform. They are software-programmable and achieve near-ASIC performance and energy efficiency, beating CPUs by orders of magnitude. Unfortunately, many SDAs struggle to efficiently implement irregular computations because they suffer from an abstraction inversion: they fail to capture coarse-grain dataflow semantics in the application — namely asynchronous communication, pipelining, and queueing — that are naturally supported by the dataflow execution model and existing SDA hardware. Ripple is a language and architecture that corrects the abstraction inversion by preserving dataflow semantics down the stack. Ripple provides asynchronous iterators, shared-memory atomics, and a familiar task-parallel interface to concisely express the asynchronous pipeline parallelism enabled by an SDA. Ripple efficiently implements deadlock-free, asynchronous task communication by exposing hardware token queues in its ISA. Across nine important workloads, compared to a recent ordered-dataflow SDA, Ripple shrinks programs by 1.9×, improves performance by 3×, increases IPC by 58%, and reduces dynamic instructions by 44%. |
|---|---|
| ISSN: | 2475-1421 2475-1421 |
| DOI: | 10.1145/3729256 |