CPU scheduling for statistically-assured real-time performance and improved energy efficiency

We present a CPU scheduling algorithm, called Energy-efficient Utility Accrual Algorithm (or EUA), for battery-powered, embedded real-time systems. We consider an embedded software application model where repeatedly occurring application activities are subject to deadline constraints specified using...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:CODES+ISSS 2004 : International Conference on Hardware/Software Codesign and System Synthesis : September 8-10, 2004, Stockholm, Sweden s. 110 - 115
Hlavní autori: Wu, Haisang, Ravindran, Binoy, Jensen, E. Douglas, Li, Peng
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: New York, NY, USA ACM 08.09.2004
IEEE
Edícia:ACM Conferences
Predmet:
ISBN:1581139373, 9781581139372
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present a CPU scheduling algorithm, called Energy-efficient Utility Accrual Algorithm (or EUA), for battery-powered, embedded real-time systems. We consider an embedded software application model where repeatedly occurring application activities are subject to deadline constraints specified using step time/utility functions. For battery-powered embedded systems, system-level energy consumption is also a primary concern. We consider CPU scheduling that (1) provides assurances on individual and collective application timeliness behaviors and (2) maximizes system-level timeliness and energy efficiency. Since the scheduling problem is intractable, EUA heuristically computes CPU schedules with a polynomial-time cost. Several properties of EUA are analytically established, including timeliness optimality during under-load situations and statistical assurances on timeliness behavior. Further, our simulation results confirm EUA's superior performance.
Bibliografia:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:1581139373
9781581139372
DOI:10.1145/1016720.1016749