FrAngel: component-based synthesis with control structures

In component-based program synthesis, the synthesizer generates a program given a library of components (functions). Existing component-based synthesizers have difficulty synthesizing loops and other control structures, and they often require formal specifications of the components, which can be exp...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of ACM on programming languages Vol. 3; no. POPL; pp. 1 - 29
Main Authors: Shi, Kensen, Steinhardt, Jacob, Liang, Percy
Format: Journal Article
Language:English
Published: New York, NY, USA ACM 02.01.2019
Subjects:
ISSN:2475-1421, 2475-1421
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In component-based program synthesis, the synthesizer generates a program given a library of components (functions). Existing component-based synthesizers have difficulty synthesizing loops and other control structures, and they often require formal specifications of the components, which can be expensive to generate. We present FrAngel, a new approach to component-based synthesis that can synthesize short Java functions with control structures when given a desired signature, a set of input-output examples, and a collection of libraries (without formal specifications). FrAngel aims to discover programs with many distinct behaviors by combining two main ideas. First, it mines code fragments from partially-successful programs that only pass some of the examples. These extracted fragments are often useful for synthesis due to a property that we call special-case similarity. Second, FrAngel uses angelic conditions as placeholders for control structure conditions and optimistically evaluates the resulting program sketches. Angelic conditions decompose the synthesis process: FrAngel first finds promising partial programs and later fills in their missing conditions. We demonstrate that FrAngel can synthesize a variety of interesting programs with combinations of control structures within seconds, significantly outperforming prior state-of-the-art.
ISSN:2475-1421
2475-1421
DOI:10.1145/3290386