Learning graph-based heuristics for pointer analysis without handcrafting application-specific features
We present Graphick, a new technique for automatically learning graph-based heuristics for pointer analysis. Striking a balance between precision and scalability of pointer analysis requires designing good analysis heuristics. For example, because applying context sensitivity to all methods in a rea...
Gespeichert in:
| Veröffentlicht in: | Proceedings of ACM on programming languages Jg. 4; H. OOPSLA; S. 1 - 30 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY, USA
ACM
13.11.2020
|
| Schlagworte: | |
| ISSN: | 2475-1421, 2475-1421 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present Graphick, a new technique for automatically learning graph-based heuristics for pointer analysis. Striking a balance between precision and scalability of pointer analysis requires designing good analysis heuristics. For example, because applying context sensitivity to all methods in a real-world program is impractical, pointer analysis typically uses a heuristic to employ context sensitivity only when it is necessary. Past research has shown that exploiting the program's graph structure is a promising way of developing cost-effective analysis heuristics, promoting the recent trend of ``graph-based heuristics'' that work on the graph representations of programs obtained from a pre-analysis. Although promising, manually developing such heuristics remains challenging, requiring a great deal of expertise and laborious effort. In this paper, we aim to reduce this burden by learning graph-based heuristics automatically, in particular without hand-crafted application-specific features. To do so, we present a feature language to describe graph structures and an algorithm for learning analysis heuristics within the language. We implemented Graphick on top of Doop and used it to learn graph-based heuristics for object sensitivity and heap abstraction. The evaluation results show that our approach is general and can generate high-quality heuristics. For both instances, the learned heuristics are as competitive as the existing state-of-the-art heuristics designed manually by analysis experts. |
|---|---|
| ISSN: | 2475-1421 2475-1421 |
| DOI: | 10.1145/3428247 |