Data Extraction via Semantic Regular Expression Synthesis

Many data extraction tasks of practical relevance require not only syntactic pattern matching but also semantic reasoning about the content of the underlying text. While regular expressions are very well suited for tasks that require only syntactic pattern matching, they fall short for data extracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of ACM on programming languages Jg. 7; H. OOPSLA2; S. 1848 - 1877
Hauptverfasser: Chen, Qiaochu, Banerjee, Arko, Demiralp, Çağatay, Durrett, Greg, Dillig, Işıl
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY, USA ACM 16.10.2023
Schlagworte:
ISSN:2475-1421, 2475-1421
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many data extraction tasks of practical relevance require not only syntactic pattern matching but also semantic reasoning about the content of the underlying text. While regular expressions are very well suited for tasks that require only syntactic pattern matching, they fall short for data extraction tasks that involve both a syntactic and semantic component. To address this issue, we introduce semantic regexes, a generalization of regular expressions that facilitates combined syntactic and semantic reasoning about textual data. We also propose a novel learning algorithm that can synthesize semantic regexes from a small number of positive and negative examples. Our proposed learning algorithm uses a combination of neural sketch generation and compositional type-directed synthesis for fast and effective generalization from a small number of examples. We have implemented these ideas in a new tool called Smore and evaluated it on representative data extraction tasks involving several textual datasets. Our evaluation shows that semantic regexes can better support complex data extraction tasks than standard regular expressions and that our learning algorithm significantly outperforms existing tools, including state-of-the-art neural networks and program synthesis tools.
ISSN:2475-1421
2475-1421
DOI:10.1145/3622863