Reliable In-Memory Neuromorphic Computing Using Spintronics

Recently Spin Transfer Torque Random Access Memory (STT-MRAM) technology has drawn a lot of attention for the direct implementation of neural networks, because it offers several advantages such as near-zero leakage, high endurance, good scalability, small foot print and CMOS compatibility. The stori...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2019 24th Asia and South Pacific Design Automation Conference (ASP-DAC) s. 1 - 7
Hlavní autoři: Munch, Christopher, Bishnoi, Rajendra, Tahoori, Mehdi B.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 21.01.2019
Témata:
ISSN:2153-697X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently Spin Transfer Torque Random Access Memory (STT-MRAM) technology has drawn a lot of attention for the direct implementation of neural networks, because it offers several advantages such as near-zero leakage, high endurance, good scalability, small foot print and CMOS compatibility. The storing device in this technology, the Magnetic Tunnel Junction (MTJ), is developed using magnetic layers that requires new fabrication materials and processes. Due to complexities of fabrication steps and materials, MTJ cells are subject to various failure mechanisms. As a consequence, the functionality of the neuromorphic computing architecture based on this technology is severely affected. In this paper, we have developed a framework to analyze the functional capability of the neural network inference in the presence of the several MTJ defects. Using this framework, we have demonstrated the required memory array size that is necessary to tolerate the given amount of defects and how to actively decrease this overhead by disabling parts of the network.
AbstractList Recently Spin Transfer Torque Random Access Memory (STT-MRAM) technology has drawn a lot of attention for the direct implementation of neural networks, because it offers several advantages such as near-zero leakage, high endurance, good scalability, small foot print and CMOS compatibility. The storing device in this technology, the Magnetic Tunnel Junction (MTJ), is developed using magnetic layers that requires new fabrication materials and processes. Due to complexities of fabrication steps and materials, MTJ cells are subject to various failure mechanisms. As a consequence, the functionality of the neuromorphic computing architecture based on this technology is severely affected. In this paper, we have developed a framework to analyze the functional capability of the neural network inference in the presence of the several MTJ defects. Using this framework, we have demonstrated the required memory array size that is necessary to tolerate the given amount of defects and how to actively decrease this overhead by disabling parts of the network.
Author Bishnoi, Rajendra
Tahoori, Mehdi B.
Munch, Christopher
Author_xml – sequence: 1
  givenname: Christopher
  surname: Munch
  fullname: Munch, Christopher
  email: christopher.muench@kit.edu
  organization: Karlsruhe Institute of Technology (KIT),Chair of Dependable Nano Computing (CDNC),Karlsruhe,Germany
– sequence: 2
  givenname: Rajendra
  surname: Bishnoi
  fullname: Bishnoi, Rajendra
  email: rajendra.bishnoi@kit.edu
  organization: Karlsruhe Institute of Technology (KIT),Chair of Dependable Nano Computing (CDNC),Karlsruhe,Germany
– sequence: 3
  givenname: Mehdi B.
  surname: Tahoori
  fullname: Tahoori, Mehdi B.
  email: mehdi.tahoori@kit.edu
  organization: Karlsruhe Institute of Technology (KIT),Chair of Dependable Nano Computing (CDNC),Karlsruhe,Germany
BookMark eNotj0tLw1AUhK-iYFu7duMifyD13OfJxZUEq4WqoBbclZv0HL2SF0m76L83orOYb5jFwEzFWdM2JMSVhIWUxt5olaFTZjEyQ2NPxHRsQTsAdKdioqTVqfP4cSHmw_ANoywolDARt69UxVBUlKya9Inqtj8mz3To2zF1X7FM8rbuDvvYfCab4dffutjs-7aJ5XApzjlUA83_OROb5f17_piuXx5W-d06DQrdPiWwXJSgWO6cM8hs0KvApqTSOrPTnjmogllmGtgFr5gQpSdlJGYOvJ6J67_dSETbro916I9bOX4AY1H_AN1xSWE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3287624.3288745
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 1450360076
9781450360074
EISSN 2153-697X
EndPage 7
ExternalDocumentID 10500457
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a276t-e05fbc02f1d6647ff4792af4cec564d39ffa2bff1830f6a92fe7719e241786093
IEDL.DBID RIE
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507459700045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:10:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a276t-e05fbc02f1d6647ff4792af4cec564d39ffa2bff1830f6a92fe7719e241786093
PageCount 7
ParticipantIDs ieee_primary_10500457
PublicationCentury 2000
PublicationDate 2019-Jan.-21
PublicationDateYYYYMMDD 2019-01-21
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan.-21
  day: 21
PublicationDecade 2010
PublicationTitle 2019 24th Asia and South Pacific Design Automation Conference (ASP-DAC)
PublicationTitleAbbrev ASP-DAC
PublicationYear 2019
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0000502710
ssj0002869603
Score 1.768837
Snippet Recently Spin Transfer Torque Random Access Memory (STT-MRAM) technology has drawn a lot of attention for the direct implementation of neural networks, because...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biological neural networks
defect modeling
Fabrication
MTJ
neuromorphic computing
Neuromorphic engineering
Neurons
Redundancy
Scalability
Torque
Title Reliable In-Memory Neuromorphic Computing Using Spintronics
URI https://ieeexplore.ieee.org/document/10500457
WOSCitedRecordID wos000507459700045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH644UEv0znxNzl4zWyTNK_BozgUdAxU2G2kaYLzUMd-CP73Jmk39eDBU0NbSkl4-V5f3_d9AJdoSma5DO5lJafCr4PfB42mlnk81yZHXkYR1wccDvPxWI0asnrkwlhrY_OZ7Ydh_JdfvptVKJX5CM9CCoItaCFiTdbaFFT8NYYNlr3FqpH02Tlv5HxSkV1xFkJf9P0xiLz_8lOJcDLo_PNF9qD3Tcwjow3k7MOWrbrQWTszkCZQu7D7Q2bwAK5D33GgSJH7ij6G1tpPEkU5_Gj2OjWkfoC_l8QOAvI0m1a1N86iBy-D2-ebO9qYJlDNUC6pTTJXmIS5tJRSoHMCFdNOGGsyKUqunNOscM6HcuKkVsxZxFRZj-SYy0TxQ2hX75U9AuKUyXmRlxqVEyKoMxU2Y85viFr6D-fkGHphaiazWhdjsp6Vkz_On8KOTzdCexZl6Rm0l_OVPYdt87GcLuYXcTW_AIITnp4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oFNTLdE78bQ5eM9skTRo8irLhNgZO2G2kaYLz0I39EPzvTdJu6sGDp4a2lJLw8r2-vu_7AG6Fzomh3LuX5RQztw5uH9QKG-LwXOlU0DyIuHZFv5-ORnJQkdUDF8YYE5rPTMsPw7_8fKpXvlTmIjzxKYjYhp2EMRKXdK1NScVdJaJCs_dQN-IuP6eVoE_MkjtKfPCzljt6mfdfjioBUJ7q_3yVQ2h-U_PQYAM6R7BligbU194MqArVBhz8EBo8hnvfeexJUqhT4J5vrv1EQZbDjWZvE43KB7h7UeghQC-zSVG64yya8Pr0OHxo48o2ASsi-BKbKLGZjoiNc86ZsJYJSZRl2uiEs5xKaxXJrHXBHFmuJLFGiFgah-Ui5ZGkJ1ArpoU5BWSlTmmW5kpIy5jXZ8pMQqzbEhV3n87RGTT91IxnpTLGeD0r53-cv4G99rDXHXc7_ecL2HfJh2_WwiS-hNpyvjJXsKs_lpPF_Dqs7BfzbaHl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2019+24th+Asia+and+South+Pacific+Design+Automation+Conference+%28ASP-DAC%29&rft.atitle=Reliable+In-Memory+Neuromorphic+Computing+Using+Spintronics&rft.au=Munch%2C+Christopher&rft.au=Bishnoi%2C+Rajendra&rft.au=Tahoori%2C+Mehdi+B.&rft.date=2019-01-21&rft.pub=ACM&rft.eissn=2153-697X&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1145%2F3287624.3288745&rft.externalDocID=10500457