Can We Use SE-specific Sentiment Analysis Tools in a Cross-Platform Setting?
In this paper, we address the problem of using sentiment analysis tools 'off-the-shelf', that is when a gold standard is not available for retraining. We evaluate the performance of four SE-specific tools in a cross-platform setting, i.e., on a test set collected from data sources differen...
Uložené v:
| Vydané v: | 2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR) s. 158 - 168 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
ACM
01.05.2020
|
| Predmet: | |
| ISSN: | 2574-3864 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we address the problem of using sentiment analysis tools 'off-the-shelf', that is when a gold standard is not available for retraining. We evaluate the performance of four SE-specific tools in a cross-platform setting, i.e., on a test set collected from data sources different from the one used for training. We find that (i) the lexicon-based tools outperform the supervised approaches retrained in a cross-platform setting and (ii) retraining can be beneficial in within-platform settings in the presence of robust gold standard datasets, even using a minimal training set. Based on our empirical findings, we derive guidelines for reliable use of sentiment analysis tools in software engineering. |
|---|---|
| ISSN: | 2574-3864 |
| DOI: | 10.1145/3379597.3387446 |