S-gram: Towards Semantic-Aware Security Auditing for Ethereum Smart Contracts
Smart contracts, as a promising and powerful application on the Ethereum blockchain, have been growing rapidly in the past few years. Since they are highly vulnerable to different forms of attacks, their security becomes a top priority. However, existing security auditing techniques are either limit...
Gespeichert in:
| Veröffentlicht in: | 2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE) S. 814 - 819 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
ACM
01.09.2018
|
| Schlagworte: | |
| ISSN: | 2643-1572 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Smart contracts, as a promising and powerful application on the Ethereum blockchain, have been growing rapidly in the past few years. Since they are highly vulnerable to different forms of attacks, their security becomes a top priority. However, existing security auditing techniques are either limited in finding vulnerabilities (rely on pre-defined bug patterns) or very expensive (rely on program analysis), thus are insufficient for Ethereum. To mitigate these limitations, we proposed a novel semantic-aware security auditing technique called S-GRAM for Ethereum. The key insight is a combination of N-gram language modeling and lightweight static semantic labeling, which can learn statistical regularities of contract tokens and capture high-level semantics as well (e.g., flow sensitivity of a transaction). S-GRAM can be used to predict potential vulnerabilities by identifying irregular token sequences and optimize existing in-depth analyzers (e.g., symbolic execution engines, fuzzers etc.). We have implemented S-GRAM for Solidity smart contracts in Ethereum. The evaluation demonstrated the potential of S-GRAM in identifying possible security issues. |
|---|---|
| ISSN: | 2643-1572 |
| DOI: | 10.1145/3238147.3240728 |