PROMAL: Precise Window Transition Graphs for Android via Synergy of Program Analysis and Machine Learning

Mobile apps have been an integral part in our daily life. As these apps become more complex, it is critical to provide automated analysis techniques to ensure the correctness, security, and performance of these apps. A key component for these automated analysis techniques is to create a graphical us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE) S. 1755 - 1767
Hauptverfasser: Liu, Changlin, Wang, Hanlin, Liu, Tianming, Gu, Diandian, Ma, Yun, Wang, Haoyu, Xiao, Xusheng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: ACM 01.05.2022
Schlagworte:
ISSN:1558-1225
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Mobile apps have been an integral part in our daily life. As these apps become more complex, it is critical to provide automated analysis techniques to ensure the correctness, security, and performance of these apps. A key component for these automated analysis techniques is to create a graphical user interface (GUI) model of an app, i.e., a window transition graph (WTG), that models windows and transitions among the windows. While existing work has provided both static and dynamic analysis to build the WTG for an app, the constructed WTG misses many transitions or contains many infeasible transitions due to the coverage issues of dynamic analysis and over-approximation of the static analysis. We propose ProMal, a "tribrid" analysis that synergistically combines static analysis, dynamic analysis, and machine learning to construct a precise WTG. Specifically, ProMal first applies static analysis to build a static WTG, and then applies dynamic analysis to verify the transitions in the static WTG. For the unverified transitions, ProMal further provides machine learning techniques that leverage runtime information (i.e., screenshots, UI layouts, and text information) to predict whether they are feasible transitions. Our evaluations on 40 real-world apps demonstrate the superiority of ProMal in building WTGs over static analysis, dynamic analysis, and machine learning techniques when they are applied separately.
AbstractList Mobile apps have been an integral part in our daily life. As these apps become more complex, it is critical to provide automated analysis techniques to ensure the correctness, security, and performance of these apps. A key component for these automated analysis techniques is to create a graphical user interface (GUI) model of an app, i.e., a window transition graph (WTG), that models windows and transitions among the windows. While existing work has provided both static and dynamic analysis to build the WTG for an app, the constructed WTG misses many transitions or contains many infeasible transitions due to the coverage issues of dynamic analysis and over-approximation of the static analysis. We propose ProMal, a "tribrid" analysis that synergistically combines static analysis, dynamic analysis, and machine learning to construct a precise WTG. Specifically, ProMal first applies static analysis to build a static WTG, and then applies dynamic analysis to verify the transitions in the static WTG. For the unverified transitions, ProMal further provides machine learning techniques that leverage runtime information (i.e., screenshots, UI layouts, and text information) to predict whether they are feasible transitions. Our evaluations on 40 real-world apps demonstrate the superiority of ProMal in building WTGs over static analysis, dynamic analysis, and machine learning techniques when they are applied separately.
Author Wang, Hanlin
Wang, Haoyu
Liu, Changlin
Xiao, Xusheng
Ma, Yun
Liu, Tianming
Gu, Diandian
Author_xml – sequence: 1
  givenname: Changlin
  surname: Liu
  fullname: Liu, Changlin
  email: cxl1029@case.edu
  organization: Case Western Reserve University
– sequence: 2
  givenname: Hanlin
  surname: Wang
  fullname: Wang, Hanlin
  email: hxw458@case.edu
  organization: Case Western Reserve University
– sequence: 3
  givenname: Tianming
  surname: Liu
  fullname: Liu, Tianming
  email: Tianming.Liu@monash.edu
  organization: Monash University
– sequence: 4
  givenname: Diandian
  surname: Gu
  fullname: Gu, Diandian
  email: gudiandian1998@pku.edu.cn
  organization: Peking University
– sequence: 5
  givenname: Yun
  surname: Ma
  fullname: Ma, Yun
  email: mayun@pku.edu.cn
  organization: Peking University
– sequence: 6
  givenname: Haoyu
  surname: Wang
  fullname: Wang, Haoyu
  email: haoyuwang@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications
– sequence: 7
  givenname: Xusheng
  surname: Xiao
  fullname: Xiao, Xusheng
  email: xusheng.xiao@case.edu
  organization: Case Western Reserve University
BookMark eNotjMtOAjEYRqvRRETWLtz0BQZ7oTd3hCiaDIEoxiX5Z9pCDbSkJZp5eyfq6izOd75rdBFTdAjdUjKmdCLuuaCEED7-JVdnaGSU7gXhhjFKz9GACqErypi4QtelfPZrOTFmgMLqdbmY1g94lV0bisMfIdr0jdcZYgmnkCKeZzjuCvYp42m0OQWLvwLgty66vO1w8n2bthkOvYZ9V0LBEC1eQLsL0eHaQY4hbm_QpYd9caN_DtH70-N69lzVy_nLbFpXwJQ4VY0AzyzXUknNhHCNI5YwR4lWSionW9kQpqQHbZlnTatarTh44YU0xBrKh-ju7zc45zbHHA6Qu41RZkKM4j8ZwVhH
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3510003.3510037
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781450392211
1450392210
EISSN 1558-1225
EndPage 1767
ExternalDocumentID 9794097
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-2046953,CNS-2028748
  funderid: 10.13039/100000001
GroupedDBID -~X
.4S
.DC
123
23M
29O
5VS
6IE
6IF
6IH
6IK
6IL
6IM
6IN
8US
AAJGR
AAWTH
ABLEC
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
APO
ARCSS
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
EDO
FEDTE
I-F
I07
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
XOL
ID FETCH-LOGICAL-a275t-b5af2d386768255ebe0d02e1087767e6c6b0276fa8d2f2bc7c873af5f5690d913
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832185400142&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:28:32 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a275t-b5af2d386768255ebe0d02e1087767e6c6b0276fa8d2f2bc7c873af5f5690d913
PageCount 13
ParticipantIDs ieee_primary_9794097
PublicationCentury 2000
PublicationDate 2022-May
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May
PublicationDecade 2020
PublicationTitle 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)
PublicationTitleAbbrev ICSE
PublicationYear 2022
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0006499
ssj0002871777
Score 2.2421207
Snippet Mobile apps have been an integral part in our daily life. As these apps become more complex, it is critical to provide automated analysis techniques to ensure...
SourceID ieee
SourceType Publisher
StartPage 1755
SubjectTerms Analytical models
Buildings
deep learning
Machine learning
mobile apps
Performance analysis
Runtime
Static analysis
window transition graph
Windows
Title PROMAL: Precise Window Transition Graphs for Android via Synergy of Program Analysis and Machine Learning
URI https://ieeexplore.ieee.org/document/9794097
WOSCitedRecordID wos000832185400142&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLXaioGpQIt4ywMjaRM78YMNIQpDWyqe3So_UZak6gvx99huWoTEwpQospTIjnPvuTnnXAAuSYwVl3EWcS1RlCbSRIIZFsWxtpopImRwvHnr0-GQjcd8VANXWy2MMSaQz0zHn4Z_-bpUS18q63L38sSc1kGdUrLWam3rKT7zD9Z21VeYuFS-svJJ0qyLM1_Ixp1wxL97qYRQ0mv-7yH2QPtHkwdH22izD2qmOADNTVMGWO3RFshHT4-Dm_61G-zb5xj47lB3-QlDUAr8LHjvTarn0KWr0PMZy1zDVS7g81fQAcLS-ht51hbcWJZAUWg4CLxLAytL1o82eO3dvdw-RFU_hUggmi0imQmLNGbEQQyHJNzyxTpGJvGegIQaooh0IJVYwTSySCqqGMXCZjZzEFrzBB-CRlEW5ghAblOmMZIYc5PiVMnEYIWIYh7CKSaPQcvP3GS6tsyYVJN28vflU7CLvKog8AjPQGMxW5pzsKNWi3w-uwjr_A2p_Kh4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwELRKQYJTgRbxxgeOpE3sxLG5IUQpoi0VFOit8hPlkqC-EH-PbdIiJC6cEkWWEtlxdmczOwPAOQmxZCJMAqYECuJI6IBTTYMwVEZRSbjwijcv3bTfp6MRG1TAxaoXRmvtyWe66U79v3xVyLkrlbWYfXlClq6BdeecVXZrrSoqLvf34nbld5jYZL4U84nipIUTV8rGTX_Ev91UfDBp1_73GNug8dOVBwereLMDKjrfBbWlLQMsd2kdZIPHh95V99IOdgY6Gr5a3F18QB-WPEML3jqZ6im0CSt0jMYiU3CRcfj06TsBYWHcjRxvCy5FSyDPFex55qWGpSjrWwM8t2-G152gdFQIOEqTWSASbpDClFiQYbGEXcBQhUhHThWQpJpIIixMJYZThQwSMpU0xdwkJrEgWrEI74FqXuR6H0BmYqowEhgzHeNYikhjiYikDsRJKg5A3c3c-P1bNGNcTtrh35fPwGZn2OuOu3f9-yOwhVyPgWcVHoPqbDLXJ2BDLmbZdHLq1_wLoHKrwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+44th+International+Conference+on+Software+Engineering+%28ICSE%29&rft.atitle=PROMAL%3A+Precise+Window+Transition+Graphs+for+Android+via+Synergy+of+Program+Analysis+and+Machine+Learning&rft.au=Liu%2C+Changlin&rft.au=Wang%2C+Hanlin&rft.au=Liu%2C+Tianming&rft.au=Gu%2C+Diandian&rft.date=2022-05-01&rft.pub=ACM&rft.eissn=1558-1225&rft.spage=1755&rft.epage=1767&rft_id=info:doi/10.1145%2F3510003.3510037&rft.externalDocID=9794097