Hardware Acceleration of Hidden Markov Model Decoding for Person Detection

This paper explores methods for hardware acceleration of Hidden Markov Model (HMM) decoding for the detection of persons in still images. Our architecture exploits the inherent structure of the HMM trellis to optimise a Viterbi decoder for extracting the state sequence from observation features. Fur...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Design, Automation and Test in Europe s. 8 - 13
Hlavní autori: Fahmy, Suhaib A., Cheung, Peter Y. K., Luk, Wayne
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Washington, DC, USA IEEE Computer Society 07.03.2005
IEEE
Edícia:ACM Conferences
Predmet:
ISBN:9780769522883, 0769522882
ISSN:1530-1591
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper explores methods for hardware acceleration of Hidden Markov Model (HMM) decoding for the detection of persons in still images. Our architecture exploits the inherent structure of the HMM trellis to optimise a Viterbi decoder for extracting the state sequence from observation features. Further performance enhancement is obtained by computing the HMM trellis states in parallel. The resulting hardware decoder architecture is mapped onto a field programmable gate array (FPGA). The performance and resource usage of our design is investigated for different levels of parallelism. Performance advantages over software are evaluated. We show how this work contributes to a real-time system for person-tracking in video-sequences.
Bibliografia:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:9780769522883
0769522882
ISSN:1530-1591
DOI:10.1109/DATE.2005.169