Hardware Acceleration of Hidden Markov Model Decoding for Person Detection
This paper explores methods for hardware acceleration of Hidden Markov Model (HMM) decoding for the detection of persons in still images. Our architecture exploits the inherent structure of the HMM trellis to optimise a Viterbi decoder for extracting the state sequence from observation features. Fur...
Uložené v:
| Vydané v: | Design, Automation and Test in Europe s. 8 - 13 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington, DC, USA
IEEE Computer Society
07.03.2005
IEEE |
| Edícia: | ACM Conferences |
| Predmet: |
Computer systems organization
> Architectures
> Other architectures
> Self-organizing autonomic computing
Computing methodologies
> Artificial intelligence
> Computer vision
> Computer vision problems
> Object recognition
Hardware
> Very large scale integration design
> Application-specific VLSI designs
> Application specific processors
Mathematics of computing
> Probability and statistics
> Probabilistic representations
> Markov networks
|
| ISBN: | 9780769522883, 0769522882 |
| ISSN: | 1530-1591 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper explores methods for hardware acceleration of Hidden Markov Model (HMM) decoding for the detection of persons in still images. Our architecture exploits the inherent structure of the HMM trellis to optimise a Viterbi decoder for extracting the state sequence from observation features. Further performance enhancement is obtained by computing the HMM trellis states in parallel. The resulting hardware decoder architecture is mapped onto a field programmable gate array (FPGA). The performance and resource usage of our design is investigated for different levels of parallelism. Performance advantages over software are evaluated. We show how this work contributes to a real-time system for person-tracking in video-sequences. |
|---|---|
| Bibliografia: | SourceType-Conference Papers & Proceedings-1 ObjectType-Conference Paper-1 content type line 25 |
| ISBN: | 9780769522883 0769522882 |
| ISSN: | 1530-1591 |
| DOI: | 10.1109/DATE.2005.169 |

