Distributed regression an efficient framework for modeling sensor network data

We present distributed regression, an efficient and general framework for in-network modeling of sensor data. In this framework, the nodes of the sensor network collaborate to optimally fit a global function to each of their local measurements. The algorithm is based upon kernel linear regression, w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IPSN 2004 : Third International Symposium on Information Processing in Sensor Networks, April 26-27, 2004, Berkeley, California, USA s. 1 - 10
Hlavní autoři: Guestrin, Carlos, Bodik, Peter, Thibaux, Romain, Paskin, Mark, Madden, Samuel
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 26.04.2004
IEEE
Edice:ACM Conferences
Témata:
ISBN:1581138466, 9781581138467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present distributed regression, an efficient and general framework for in-network modeling of sensor data. In this framework, the nodes of the sensor network collaborate to optimally fit a global function to each of their local measurements. The algorithm is based upon kernel linear regression, where the model takes the form of a weighted sum of local basis functions; this provides an expressive yet tractable class of models for sensor network data. Rather than transmitting data to one another or outside the network, nodes communicate constraints on the model parameters, drastically reducing the communication required. After the algorithm is run, each node can answer queries for its local region, or the nodes can efficiently transmit the parameters of the model to a user outside the network. We present an evaluation of the algorithm based upon data from a 48-node sensor network deployment at the Intel Research - Berkeley Lab, demonstrating that our distributed algorithm converges to the optimal solution at a fast rate and is very robust to packet losses.
Bibliografie:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:1581138466
9781581138467
DOI:10.1145/984622.984624