Improving communication performance in dense linear algebra via topology aware collectives
Recent results have shown that topology aware mapping reduces network contention in communication-intensive kernels on massively parallel machines. We demonstrate that on mesh interconnects, topology aware mapping also allows for the utilization of highly-efficient topology aware collectives. We map...
Uloženo v:
| Vydáno v: | 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC) s. 1 - 11 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY, USA
ACM
12.11.2011
IEEE |
| Edice: | ACM Conferences |
| Témata: | |
| ISBN: | 145030771X, 9781450307710 |
| ISSN: | 2167-4329 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Recent results have shown that topology aware mapping reduces network contention in communication-intensive kernels on massively parallel machines. We demonstrate that on mesh interconnects, topology aware mapping also allows for the utilization of highly-efficient topology aware collectives. We map novel 2.5D dense linear algebra algorithms to exploit rectangular collectives on cuboid partitions allocated by a Blue Gene/P supercomputer. Our mappings allow the algorithms to exploit optimized line multicasts and reductions. Commonly used 2D algorithms cannot be mapped in this fashion. On 16,384 nodes (65,536 cores) of Blue Gene/P, 2.5D algorithms that exploit rectangular collectives are significantly faster than 2D matrix multiplication (MM) and LU factorization, up to 8.7x and 2.1x, respectively. These speed-ups are due to communication reduction (up to 95.6% for 2.5D MM with respect to 2D MM). We also derive LogP-based novel performance models for rectangular broadcasts and reductions. Using those, we model the performance of matrix multiplication and LU factorization on a hypothetical exascale architecture. |
|---|---|
| ISBN: | 145030771X 9781450307710 |
| ISSN: | 2167-4329 |
| DOI: | 10.1145/2063384.2063487 |

