Reachability in Two-Dimensional Unary Vector Addition Systems with States is NL-Complete

Blondin et al. showed at LICS 2015 that two-dimensional vector addition systems with states have reachability witnesses of length exponential in the number of states and polynomial in the norm of vectors. The resulting guess-and-verify algorithm is optimal (PSPACE), but only if the input vectors are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science S. 477 - 484
Hauptverfasser: Englert, Matthias, Lazić, Ranko, Totzke, Patrick
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: New York, NY, USA ACM 05.07.2016
Schriftenreihe:ACM Conferences
ISBN:9781450343916, 1450343910
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blondin et al. showed at LICS 2015 that two-dimensional vector addition systems with states have reachability witnesses of length exponential in the number of states and polynomial in the norm of vectors. The resulting guess-and-verify algorithm is optimal (PSPACE), but only if the input vectors are given in binary. We answer positively the main question left open by their work, namely establish that reachability witnesses of pseudo-polynomial length always exist. Hence, when the input vectors are given in unary, the improved guess-and-verify algorithm requires only logarithmic space.
ISBN:9781450343916
1450343910
DOI:10.1145/2933575.2933577