Integrating Compound Terms in Bayesian Text Classification

Text classification usually assumed a word-based document representation. In this paper, we propose a new approach to integrate compound terms in Bayesian text classification. Compound terms are used as complementary features to single words. An acute problem is to consider their dependence with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/WIC/ACM International Conference on web intelligence S. 598 - 601
Hauptverfasser: Bai, Jing, Nie, Jian-Yun, Cao, Guihong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: Washington, DC, USA IEEE Computer Society 19.09.2005
IEEE
Schriftenreihe:ACM Conferences
Schlagworte:
ISBN:076952415X, 9780769524153
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Text classification usually assumed a word-based document representation. In this paper, we propose a new approach to integrate compound terms in Bayesian text classification. Compound terms are used as complementary features to single words. An acute problem is to consider their dependence with the component words. In this paper, we propose to use smoothing techniques to combine both compound term and word representations. Experiments have been conducted on two corpora. Our results show that this approach can slightly but steadily improve the classification performance on both test corpora.
Bibliographie:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:076952415X
9780769524153
DOI:10.1109/WI.2005.79