Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case
The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $\epsilon \leq c_0\mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is glob...
Uloženo v:
| Hlavní autoři: | , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence, Rhode Island
American Mathematical Society
2020
|
| Edice: | Memoirs of the American Mathematical Society |
| Témata: | |
| ISBN: | 1470442175, 9781470442170 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Introduction -- Outline of the proof -- Regularization and continuation -- High norm estimate on <inline-formula content-type="math/mathml"> Q 2 Q^2 </inline-formula> -- High norm estimate on <inline-formula content-type="math/mathml"> Q 3 Q^3 </inline-formula> -- High norm estimate on <inline-formula content-type="math/mathml"> Q 0 1 Q^1_0 </inline-formula> -- High norm estimate on <inline-formula content-type="math/mathml"> Q ≠<!-- ≠ --> 1 Q^1_{\neq } </inline-formula> -- Coordinate system controls -- Enhanced dissipation estimates -- Sobolev estimates -- Acknowledgments -- Fourier analysis conventions, elementary inequalities, and Gevrey spaces -- Definition and analysis of norms -- Multiplier and paraproduct tools -- Elliptic estimates

