Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case
The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $\epsilon \leq c_0\mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is glob...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Format: | E-Book Buch |
| Sprache: | Englisch |
| Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
2020
|
| Schriftenreihe: | Memoirs of the American Mathematical Society |
| Schlagworte: | |
| ISBN: | 1470442175, 9781470442170 |
| ISSN: | 0065-9266, 1947-6221 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $\epsilon \leq c_0\mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t \rightarrow \infty $. For times $t \gtrsim \mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of "2.5 dimensional" streamwise-independent solutions referred to as streaks. |
|---|---|
| Bibliographie: | Includes bibliographical reference (p. 155-158) July 2020, volume 266, number 1294 (fourth of 6 numbers) |
| ISBN: | 1470442175 9781470442170 |
| ISSN: | 0065-9266 1947-6221 |
| DOI: | 10.1090/memo/1294 |

