Cu2O/CuO Nanoparticle-Cotton Fiber Biocomposite Catalyst: Self-Improvement through Morphological Changes during Methyl Orange Degradation

In this study, the application of a novel polymer-supported Cu2O/CuO nanoparticle catalyst for the efficient degradation of an organic dye, in which the nanoparticle catalyst is incorporated within a natural plant fiber matrix, is presented. The use of plant fibers provides a renewable and environme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir Jg. 40; H. 52; S. 27174
Hauptverfasser: Hillyer, Matthew B, Jordan, Jacobs H, Ernst, Nicholas E, Nam, Sunghyun, Easson, Michael W
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 31.12.2024
ISSN:1520-5827, 1520-5827
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the application of a novel polymer-supported Cu2O/CuO nanoparticle catalyst for the efficient degradation of an organic dye, in which the nanoparticle catalyst is incorporated within a natural plant fiber matrix, is presented. The use of plant fibers provides a renewable and environmentally friendly support material, and enhances the catalytic efficiency over consecutive degradation cycles. This innovative design promotes the efficient adsorption and degradation of dye. The nanoparticle biocomposite showed a remarkable capacity to degrade methyl orange in solution (50 ppm, 150 mL) in <3 h (pH 7.2) or <1.5 h (pH 9.1) using 150 mg catalyst material containing 1.7 wt % copper content. Over five catalytic reaction cycles, the content of Cu1+ relative to Cu2+ increased from 57.6 to 94.1%, average particle size decreased from 54.7 ± 58.5 to 28.7 ± 22.0 nm and the average circularity increased from 0.69 ± 0.25 to 0.75 ± 0.25, while maintaining high catalytic degradation efficiency (>99.6%). The experimental results demonstrate high degradation rates, showcasing the catalyst's potential for sustainable industrial waste remediation applications.In this study, the application of a novel polymer-supported Cu2O/CuO nanoparticle catalyst for the efficient degradation of an organic dye, in which the nanoparticle catalyst is incorporated within a natural plant fiber matrix, is presented. The use of plant fibers provides a renewable and environmentally friendly support material, and enhances the catalytic efficiency over consecutive degradation cycles. This innovative design promotes the efficient adsorption and degradation of dye. The nanoparticle biocomposite showed a remarkable capacity to degrade methyl orange in solution (50 ppm, 150 mL) in <3 h (pH 7.2) or <1.5 h (pH 9.1) using 150 mg catalyst material containing 1.7 wt % copper content. Over five catalytic reaction cycles, the content of Cu1+ relative to Cu2+ increased from 57.6 to 94.1%, average particle size decreased from 54.7 ± 58.5 to 28.7 ± 22.0 nm and the average circularity increased from 0.69 ± 0.25 to 0.75 ± 0.25, while maintaining high catalytic degradation efficiency (>99.6%). The experimental results demonstrate high degradation rates, showcasing the catalyst's potential for sustainable industrial waste remediation applications.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-5827
1520-5827
DOI:10.1021/acs.langmuir.4c02405