Is mutation an appropriate tool for testing experiments?

The empirical assessment of test techniques plays an important role in software testing research. One common practice is to instrument faults, either manually or by using mutation operators. The latter allows the systematic, repeatable seeding of large numbers of faults; however, we do not know whet...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 27th international conference on Software engineering s. 402 - 411
Hlavní autoři: Andrews, J. H., Briand, L. C., Labiche, Y.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 15.05.2005
Edice:ACM Conferences
Témata:
ISBN:1581139632, 9781581139631
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The empirical assessment of test techniques plays an important role in software testing research. One common practice is to instrument faults, either manually or by using mutation operators. The latter allows the systematic, repeatable seeding of large numbers of faults; however, we do not know whether empirical results obtained this way lead to valid, representative conclusions. This paper investigates this important question based on a number of programs with comprehensive pools of test cases and known faults. It is concluded that, based on the data available thus far, the use of mutation operators is yielding trustworthy results (generated mutants are similar to real faults). Mutants appear however to be different from hand-seeded faults that seem to be harder to detect than real faults.
ISBN:1581139632
9781581139631
DOI:10.1145/1062455.1062530