Batch Updates of Distributed Streaming Graphs using Linear Algebra

We develop a distributed-memory parallel algorithm for performing batch updates on streaming graphs, where vertices and edges are continuously added or removed. Our algorithm leverages distributed sparse matrices as the core data structures, utilizing equivalent sparse matrix operations to execute g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis S. 645 - 649
Hauptverfasser: Hassani, Elaheh, Hussain, Md Taufique, Azad, Ariful
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 17.11.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a distributed-memory parallel algorithm for performing batch updates on streaming graphs, where vertices and edges are continuously added or removed. Our algorithm leverages distributed sparse matrices as the core data structures, utilizing equivalent sparse matrix operations to execute graph updates. By reducing unnecessary communication among processes and employing shared-memory parallelism, we accelerate updates of distributed graphs. Additionally, we maintain a balanced load in the output matrix by permuting the resultant matrix during the update process. We demonstrate that our streaming update algorithm is at least 25 times faster than alternative linear-algebraic methods and scales linearly up to 4,096 cores (32 nodes) on a Cray EX supercomputer.
DOI:10.1109/SCW63240.2024.00089