Batch Updates of Distributed Streaming Graphs using Linear Algebra
We develop a distributed-memory parallel algorithm for performing batch updates on streaming graphs, where vertices and edges are continuously added or removed. Our algorithm leverages distributed sparse matrices as the core data structures, utilizing equivalent sparse matrix operations to execute g...
Uloženo v:
| Vydáno v: | SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 645 - 649 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
17.11.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We develop a distributed-memory parallel algorithm for performing batch updates on streaming graphs, where vertices and edges are continuously added or removed. Our algorithm leverages distributed sparse matrices as the core data structures, utilizing equivalent sparse matrix operations to execute graph updates. By reducing unnecessary communication among processes and employing shared-memory parallelism, we accelerate updates of distributed graphs. Additionally, we maintain a balanced load in the output matrix by permuting the resultant matrix during the update process. We demonstrate that our streaming update algorithm is at least 25 times faster than alternative linear-algebraic methods and scales linearly up to 4,096 cores (32 nodes) on a Cray EX supercomputer. |
|---|---|
| DOI: | 10.1109/SCW63240.2024.00089 |