Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces
This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solvability of th...
Uložené v:
| Hlavní autori: | , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Providence, Rhode Island
American Mathematical Society
2016
|
| Vydanie: | 1 |
| Edícia: | Memoirs of the American Mathematical Society |
| Predmet: | |
| ISBN: | 1470419890, 9781470419899 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable
(1)
Mapping properties for the double and single layer potentials, as well as the Newton potential;
(2) Extrapolation-type
solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given
(3) Well-posedness for the non-homogeneous boundary
value problems.
In particular, we prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for
operators with real, not necessarily symmetric coefficients. |
|---|---|
| Bibliografia: | Includes bibliographical references Volume 243, number 1149 (second of 4 numbers), September 2016 |
| ISBN: | 1470419890 9781470419899 |
| ISSN: | 0065-9266 1947-6221 |
| DOI: | 10.1090/memo/1149 |

