Reinforcement Learning and DEAR Framework for Solving the Qubit Mapping Problem

Quantum computing is gaining more and more attention due to its huge potential and the constant progress in quantum computer development. IBM and Google have released quantum architectures with more than 50 qubits. However, in these machines, the physical qubits are not fully connected so that two-q...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) s. 1 - 9
Hlavní autoři: Huang, Ching-Yao, Lien, Chi-Hsiang, Mak, Wai-Kei
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 29.10.2022
Témata:
ISSN:1558-2434
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Quantum computing is gaining more and more attention due to its huge potential and the constant progress in quantum computer development. IBM and Google have released quantum architectures with more than 50 qubits. However, in these machines, the physical qubits are not fully connected so that two-qubit interaction can only be performed between specific pairs of the physical qubits. To execute a quantum circuit, it is necessary to transform it into a functionally equivalent one that respects the constraints imposed by the target architecture. Quantum circuit transformation inevitably introduces additional gates which reduces the fidelity of the circuit. Therefore, it is important that the transformation method completes the transformation with minimal overheads. It consists of two steps, initial mapping and qubit routing. Here we propose a reinforcement learning-based model to solve the initial mapping problem. Initial mapping is formulated as sequence-to-sequence learning and self- attention network is used to extract features from a circuit. For qubit routing, a DEAR (Dynamically-Extract-and-Route) framework is proposed. The framework iteratively extracts a subcircuit and uses A* search to determine when and where to insert additional gates. It helps to preserve the lookahead ability dynamically and to provide more accurate cost estimation efficiently during A* search. The experimental results show that our RL-model generates better initial mappings than the best known algorithms with 12% fewer additional gates in the qubit routing stage. Furthermore, our DEAR- framework outperforms the state-of-the-art qubit routing approach with 8.4% and 36.3% average reduction in the number of additional gates and execution time starting from the same initial mapping.
ISSN:1558-2434
DOI:10.1145/3508352.3549472