Lessons from the NLBSE 2024 Competition: Towards Building Efficient Models for GitHub Issue Classification

This paper presents the findings of our team's efforts during the "NLBSE 2024" competition, which centered on the multi-class classification of GitHub Issues. The challenge required models with strong few-shot learning capabilities to distinguish between 300 issues from five different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 IEEE/ACM International Workshop on Natural Language-Based Software Engineering (NLBSE) S. 45 - 48
Hauptverfasser: Gomez-Barrera, Daniel Fernando, Becerra, Luccas Rojas, Roncancio, Juan Pinzon, Almanza, David Ortiz, Arboleda, Juan, Linares-Vasquez, Mario, Manrique, Ruben Francisco
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: ACM 20.04.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!