ASPPLN: Accelerated Symbolic Probability Propagation in Logic Network

Probability propagation is an important task used in logic network analysis, which propagates signal probabilities from its primary inputs to its primary outputs. It has many applications such as power estimation, reliability analysis, and error analysis for approximate circuits. Existing methods fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD) S. 1 - 9
Hauptverfasser: Xiao, Weihua, Qian, Weikang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: ACM 29.10.2022
Schlagworte:
ISSN:1558-2434
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Probability propagation is an important task used in logic network analysis, which propagates signal probabilities from its primary inputs to its primary outputs. It has many applications such as power estimation, reliability analysis, and error analysis for approximate circuits. Existing methods for the task can be divided into two categories: simulation-based and probability-based methods. However, most of them suffer from low accuracy or bad scalability. In this work, we propose ASPPLN, a method for accelerated symbolic probability propagation in logic network, which has a linear complexity with the network size. We first introduce a new definition in a graph called redundant input and take advantage of it to simplify the propagation process without losing accuracy. Then, a technique called symbol limitation is proposed to limit the complexity of each node's propagation according to the partial probability significances of the symbols. The experimental results showed that compared to the existing methods, ASPPLN improves the estimation accuracy of switching activity by up to 24.70%, while it also has a speedup of up to 29×.
ISSN:1558-2434
DOI:10.1145/3508352.3549456