Low power GPGPU computation with imprecise hardware

Massively parallel computation in GPUs significantly boosts performance of compute-intensive applications but creates power and thermal issues that limit further performance scaling. This paper demonstrates significant GPGPU power savings by relaxing application accuracy requirements and enabling th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - ACM IEEE Design Automation Conference s. 1 - 6
Hlavní autoři: Hang Zhang, Putic, Mateja, Lach, John
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.06.2014
Témata:
ISSN:0738-100X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Massively parallel computation in GPUs significantly boosts performance of compute-intensive applications but creates power and thermal issues that limit further performance scaling. This paper demonstrates significant GPGPU power savings by relaxing application accuracy requirements and enabling the use of low power imprecise hardware (IHW). A synthesized set of novel imprecise floating point arithmetic units is presented. GPGPU-Sim and GPUWattch are used to estimate impacts of IHW units on output quality and system-level power consumption, providing a quality-power tradeoff model for application-specific optimization. Experimental results for a 45 nm process show up to 32% power savings with negligible impacts on output quality.
ISSN:0738-100X
DOI:10.1145/2593069.2593156