Deep Code Comment Generation
During software maintenance, code comments help developers comprehend programs and reduce additional time spent on reading and navigating source code. Unfortunately, these comments are often mismatched, missing or outdated in the software projects. Developers have to infer the functionality from the...
Saved in:
| Published in: | 2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC) pp. 200 - 210 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
ACM
01.05.2018
|
| Subjects: | |
| ISSN: | 2643-7171 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | During software maintenance, code comments help developers comprehend programs and reduce additional time spent on reading and navigating source code. Unfortunately, these comments are often mismatched, missing or outdated in the software projects. Developers have to infer the functionality from the source code. This paper proposes a new approach named DeepCom to automatically generate code comments for Java methods. The generated comments aim to help developers understand the functionality of Java methods. DeepCom applies Natural Language Processing (NLP) techniques to learn from a large code corpus and generates comments from learned features. We use a deep neural network that analyzes structural information of Java methods for better comments generation. We conduct experiments on a large-scale Java corpus built from 9,714 open source projects from GitHub. We evaluate the experimental results on a machine translation metric. Experimental results demonstrate that our method DeepCom outperforms the state-of-the-art by a substantial margin. |
|---|---|
| ISSN: | 2643-7171 |
| DOI: | 10.1145/3196321.3196334 |