DeftNN addressing bottlenecks for DNN execution on GPUs via synapse vector elimination and near-compute data fission

Deep neural networks (DNNs) are key computational building blocks for emerging classes of web services that interact in real time with users via voice, images and video inputs. Although GPUs have gained popularity as a key accelerator platform for deep learning workloads, the increasing demand for D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MICRO-50 : the 50th annual IEEE/ACM International Symposium on Microarchitecture : proceedings : October 14-18, 2017, Cambridge, MA S. 786 - 799
Hauptverfasser: Hill, Parker, Jain, Animesh, Hill, Mason, Zamirai, Babak, Hsu, Chang-Hong, Laurenzano, Michael A., Mahlke, Scott, Tang, Lingjia, Mars, Jason
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: New York, NY, USA ACM 14.10.2017
Schriftenreihe:ACM Conferences
Schlagworte:
ISBN:1450349528, 9781450349529
ISSN:2379-3155
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!