Scalable implicit finite element solver for massively parallel processing with demonstration to 160K cores
Implicit methods for partial differential equations using unstructured meshes allow for an efficient solution strategy for many real-world problems (e.g., simulation-based virtual surgical planning). Scalable solvers employing these methods not only enable solution of extremely-large practical probl...
Uloženo v:
| Vydáno v: | Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis s. 1 - 12 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY, USA
ACM
14.11.2009
|
| Edice: | ACM Conferences |
| Témata: |
Computing methodologies
> Modeling and simulation
> Simulation types and techniques
> Massively parallel and high-performance simulations
Mathematics of computing
> Mathematical analysis
> Numerical analysis
> Computations in finite fields
|
| ISBN: | 1605587443, 9781605587448 |
| ISSN: | 2167-4329 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Implicit methods for partial differential equations using unstructured meshes allow for an efficient solution strategy for many real-world problems (e.g., simulation-based virtual surgical planning). Scalable solvers employing these methods not only enable solution of extremely-large practical problems but also lead to dramatic compression in time-to-solution. We present a parallelization paradigm and associated procedures that enable our implicit, unstructured flow-solver to achieve strong scalability.
We consider fluid-flow examples in two application areas to show the effectiveness of our procedures that yield near-perfect strong-scaling on various (including near-petascale) systems. The first area includes a double-throat nozzle (DTN) whereas the second considers a patient-specific abdominal aortic aneurysm (AAA) model. We present excellent strong-scaling on three cases ranging from relatively small to large; a DTN model with O(106) elements up to 8,192 cores (9 core-doublings), an AAA model with O(108) elements up to 32,768 cores (6 core-doublings) and O(109) elements up to 163,840 cores. |
|---|---|
| ISBN: | 1605587443 9781605587448 |
| ISSN: | 2167-4329 |
| DOI: | 10.1145/1654059.1654129 |

