Word level feature discovery to enhance quality of assertion mining
Automatic assertion generation methodologies based on machine learning generate assertions at bit level. These bit level assertions are numerous, making them unreadable and frequently unusable. We propose a methodology to discover word level features using static and dynamic analysis of the RTL sour...
Gespeichert in:
| Veröffentlicht in: | 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) S. 210 - 217 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY, USA
ACM
05.11.2012
IEEE |
| Schriftenreihe: | ACM Conferences |
| Schlagworte: | |
| ISBN: | 9781450315739, 1450315739 |
| ISSN: | 1092-3152 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Automatic assertion generation methodologies based on machine learning generate assertions at bit level. These bit level assertions are numerous, making them unreadable and frequently unusable. We propose a methodology to discover word level features using static and dynamic analysis of the RTL source code. We use discovered word level features for the underlying learning algorithms to generate word level assertions. A post processing of assertions is employed to remove redundant propositions. Experimental results on Ethernet MAC, I2C, and OpenRISC designs show that the generated word level assertions have higher expressiveness and readability than their corresponding bit level assertions. |
|---|---|
| ISBN: | 9781450315739 1450315739 |
| ISSN: | 1092-3152 |
| DOI: | 10.1145/2429384.2429424 |

