Accurate Operation Delay Prediction for FPGA HLS Using Graph Neural Networks

Modern heterogeneous FPGA architectures incorporate a variety of hardened blocks for boosting the performance of arithmetic-intensive designs, such as DSP blocks and carry blocks. Since hardened blocks can be configured in different ways, a variety of datapath patterns can be mapped into these block...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Digest of technical papers - IEEE/ACM International Conference on Computer-Aided Design s. 1 - 9
Hlavní autoři: Ustun, Ecenur, Deng, Chenhui, Pal, Debjit, Li, Zhijing, Zhang, Zhiru
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Association on Computer Machinery 02.11.2020
Témata:
ISSN:1558-2434
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Modern heterogeneous FPGA architectures incorporate a variety of hardened blocks for boosting the performance of arithmetic-intensive designs, such as DSP blocks and carry blocks. Since hardened blocks can be configured in different ways, a variety of datapath patterns can be mapped into these blocks. We observe that existing high-level synthesis (HLS) tools often fail to capture some of the operation mapping patterns, leading to limited estimation accuracy in terms of resource usage and delay. To address this deficiency, we propose to exploit graph neural networks (GNN) to automatically learn operation mapping patterns. We apply GNN models that are trained on microbenchmarks directly to realistic designs through inductive learning. Experimental results show that our approach can effectively infer various valid mapping patterns on both microbenchmarks and realistic designs. Furthermore, the proposed framework is exploited to improve the accuracy of delay estimation in HLS.
ISSN:1558-2434
DOI:10.1145/3400302.3415657