Indirect Keyword Recommendation

Helping users to find useful contacts or potentially interesting subjects is a challenge for social and productive networks. The evidence of the content produced by users must be considered in this task, which may be simplified by the use of the meta-data associated with the content, i.e., The categ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) Jg. 1; S. 384 - 391
Hauptverfasser: Sabino, Andre, Rodrigues, Armanda, Goulao, Miguel, Gouveia, Joao
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2014
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Helping users to find useful contacts or potentially interesting subjects is a challenge for social and productive networks. The evidence of the content produced by users must be considered in this task, which may be simplified by the use of the meta-data associated with the content, i.e., The categorization supported by the network -- descriptive keywords, or tags. In this paper we present a model that enables keyword discovery methods through the interpretation of the network as a graph, solely relying on keywords that categorize or describe productive items. The model and keyword discovery methods presented in this paper avoid content analysis, and move towards a generic approach to the identification of relevant interests and, eventually, contacts. The evaluation of the model and methods is executed by two experiments that perform frequency and classification analyses over the Flickr network. The results show that we can efficiently recommend keywords to users.
AbstractList Helping users to find useful contacts or potentially interesting subjects is a challenge for social and productive networks. The evidence of the content produced by users must be considered in this task, which may be simplified by the use of the meta-data associated with the content, i.e., The categorization supported by the network -- descriptive keywords, or tags. In this paper we present a model that enables keyword discovery methods through the interpretation of the network as a graph, solely relying on keywords that categorize or describe productive items. The model and keyword discovery methods presented in this paper avoid content analysis, and move towards a generic approach to the identification of relevant interests and, eventually, contacts. The evaluation of the model and methods is executed by two experiments that perform frequency and classification analyses over the Flickr network. The results show that we can efficiently recommend keywords to users.
Author Gouveia, Joao
Sabino, Andre
Rodrigues, Armanda
Goulao, Miguel
Author_xml – sequence: 1
  givenname: Andre
  surname: Sabino
  fullname: Sabino, Andre
  email: amgs@campus.fct.unl.pt
  organization: Dept. de Inf., Univ. Nova de Lisboa, Caparica, Portugal
– sequence: 2
  givenname: Armanda
  surname: Rodrigues
  fullname: Rodrigues, Armanda
  email: a.rodrigues@fct.unl.pt
  organization: Dept. de Inf., Univ. Nova de Lisboa, Caparica, Portugal
– sequence: 3
  givenname: Miguel
  surname: Goulao
  fullname: Goulao, Miguel
  email: mgoul@fct.unl.pt
  organization: Dept. de Inf., Univ. Nova de Lisboa, Caparica, Portugal
– sequence: 4
  givenname: Joao
  surname: Gouveia
  fullname: Gouveia, Joao
  email: j.gouveia@campus.fct.unl.pt
  organization: Dept. de Inf., Univ. Nova de Lisboa, Caparica, Portugal
BookMark eNotjE1LxDAQQCMoqGuvXjy4f6B1pkkmmeOy-FFcEKTgcWmSWajYVNqC7L93QU_vHR7vWp3nMYtStwgVIvDDR1M2m7aqAU1FcKYKdh6NYzZotL9UxTx_AgASae_Mlbpvcuonicv6VY4_45TW7xLHYZCcuqUf8426OHRfsxT_XKn26bHdvpS7t-dmu9mVXW3sUiYU0DYKnSSAr4ECe6MxeBvYRGtdcsQ2mICYrK-d5XiwlHTUgUn0St39bXsR2X9P_dBNxz3xKSTWvxf8PLQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2014.60
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479941438
1479941433
EndPage 391
ExternalDocumentID 6927569
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a245t-d1e035ce6d1eb08206b98431b85b94c557d7695b4b11d582759cf56d3c3b96e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365534500052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 04:35:59 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a245t-d1e035ce6d1eb08206b98431b85b94c557d7695b4b11d582759cf56d3c3b96e3
PageCount 8
ParticipantIDs ieee_primary_6927569
PublicationCentury 2000
PublicationDate 2014-Aug.
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-Aug.
PublicationDecade 2010
PublicationTitle 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)
PublicationTitleAbbrev WI-IAT
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001663874
ssj0001663873
ssj0001651103
Score 1.5634295
Snippet Helping users to find useful contacts or potentially interesting subjects is a challenge for social and productive networks. The evidence of the content...
SourceID ieee
SourceType Publisher
StartPage 384
SubjectTerms Analytical models
Collaborative work
Context
Feature extraction
Production
social graph
social network
Social network services
tagging
Training
Title Indirect Keyword Recommendation
URI https://ieeexplore.ieee.org/document/6927569
Volume 1
WOSCitedRecordID wos000365534500052&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQNTgRbxJgMjbmP8ikeEqIhAVYcKulWxfZEYSFFJQfx77CS0CLGw-TxY58f5zr7HB3CRx5mVGbLg-heE5ywmRitNKDXMuNiiqsBgHh_UeJzMZnrSgst1LgwiVsFnOAjNypfvFnYVvsqGUodi5boNbaVknau1-U-R3nRoPIo17U-W-k3zpm4jjfXwKSXp9TREd_FBqFD5A12lUi6j7v_Y2oH-Jksvmqz1zy60sNiD7jdMQ9RIbQ_O06JWXNE9fn74x2YU3pwvftAaT6kP09Ht9OaONLgIJLvioiSOYsyERekbJqhwaXTiDQGTCKO5FUI5JbUw3FDqROKZ0zYX0jHLjJbI9qFTLAo8gEhQROYUeiPQS7LLDDVZLjJ_8TiunIkPoRemO3-tK1_Mm5ke_d19DNthMevwuBPolMsVnsKWfS-f35Zn1XZ9AQxBkiM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggRTgRbxbgZG0sY4tuMRIapGLVWHCLpVsX2RGEhRSUH8e-wktAixsPk8WOfH-c6-xwdwlQWp5ilS5_pnfpjRwFdSSJ8QRZUJNIoSDOZxLCaTaDaT0wZcr3NhELEMPsOea5a-fLPQK_dV1ufSFSuXW7DtkLPqbK3Njwq3xkPtU6xoe7bEbzqsKzeSQPafYj--TVx8V9hzNSp_4KuU6mXQ-h9j-9DZ5Ol507UGOoAG5ofQ-gZq8Gq5bUM3zivV5Y3w88M-Nz336nyxg1aISh1IBvfJ3dCvkRH89CZkhW8IBpRp5LahnBLnSkbWFFARUzLUjAkjuGQqVIQYFlnmpM4YN1RTJTnSI2jmixyPwWMEkRqB1gy0smxSRVSasdRePSYURgUn0HbTnb9WtS_m9UxP_-7uwu4weRjPx_FkdAZ7bmGrYLlzaBbLFV7Ajn4vnt-Wl-XWfQHgdpVs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+IEEE%2FWIC%2FACM+International+Joint+Conferences+on+Web+Intelligence+%28WI%29+and+Intelligent+Agent+Technologies+%28IAT%29&rft.atitle=Indirect+Keyword+Recommendation&rft.au=Sabino%2C+Andre&rft.au=Rodrigues%2C+Armanda&rft.au=Goulao%2C+Miguel&rft.au=Gouveia%2C+Joao&rft.date=2014-08-01&rft.pub=IEEE&rft.volume=1&rft.spage=384&rft.epage=391&rft_id=info:doi/10.1109%2FWI-IAT.2014.60&rft.externalDocID=6927569